skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing undergraduate teaching materials in collaboration with pre-university students
ABSTRACT In this project we have involved four high-achieving pre-university summer placement students in the development of undergraduate teaching materials, namely tutorial videos for first year undergraduate Electrical and Electronic Engineering lab, and computer simulations of didactic semiconductor structures for an Electrical Science first year compulsory taught module. Here we describe our approach and preliminary results.  more » « less
Award ID(s):
1663296
PAR ID:
10028121
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
MRS Advances
Volume:
2
Issue:
31-32
ISSN:
2059-8521
Page Range / eLocation ID:
1713 to 1719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computational modeling skills are critical for the success of both engineering students and practicing engineers and are increasingly included as part of the undergraduate curriculum. However, students' belief in the utility of these skills and their ability to succeed in learning them can vary significantly. This study hypothesizes that the self-efficacy and motivation of engineering students at the outset of their degree program varies significantly and that engineering students pursuing some disciplines (such as computer, software, and electrical engineering) will begin with a higher initial self-efficacy than others (such as materials science and engineering and biomedical engineering). In this pilot study, a survey was used to investigate the motivational and efficacy factors of approximately 70 undergraduate students in their first year of engineering studies at a large public university. Surveys were implemented after students were introduced to MATLAB in their first-year engineering design course. The data was analyzed for variations in baseline motivation based on the students' intended major. The results of this survey will help determine whether efficacy and interest related to computational modeling are indeed lower for certain engineering disciplines and will inform future studies in this area. 
    more » « less
  2. It is increasingly critical that engineering students develop proficiency with computational modeling tools, and many curricula include some introduction to such tools during their first year. It is clear that student interest and skill can vary significantly based on prior experiences, but it is less clear whether student motivation specifically related to computational modeling varies as well. This study hypothesizes that the self-efficacy and utility value related to computational methods varies significantly in students’ first year and that engineering students pursuing some disciplines (such as computer, software, and electrical engineering) will begin with a higher initial self-efficacy than others (such as chemical, materials, and biomedical engineering). A survey was used to investigate the utility value and efficacy of approximately 700 undergraduate students in their first year of engineering studies at both a large public institution and a small private institution. Data is analyzed for variations in baseline motivation based on the students’ intended major. This analysis also considers known confounding factors such as gender, race, and prior experience with programming. The results of this survey will help determine whether efficacy and interest related to computational methods vary based on intended major early in an engineering student’s academic career. Ultimately, it is hoped that this study can inform future studies related to what types of interventions might benefit students. 
    more » « less
  3. Project Connect (PC) is an immersive professional development program designed to increase the number of students from underrepresented groups in engineering who pursue careers in the microwave engineering and related fields. Most of the professionals in this area have been educated in the electrical engineering (EE) field with a focus on applied electromagnetics, antenna theory and communication systems. The electromagnetics class in a typical electrical engineering undergraduate program involves vector calculus and abstract concepts without, in many cases, the right facilities or equipment to aid experiential learning. This leaves most students perplexed and disinterested in the field, while they do not fully realize the wealth of opportunities that lie beyond this course. This problem is even more pronounced for students from underrepresented groups as they may have less exposure to the professional and academic opportunities in microwave engineering. Project Connect was birthed out of the need to keep these students engaged in the field by exposing them to a broader view of the field and the impact that they can have on technology. Each year, the PC program is housed within the Institute of Electrical and Electronics Engineers (IEEE) International Microwave Symposium (IMS). IMS is the flagship conference of the Microwave Theory and Techniques (MTT) Society and is based in North America. The typical attendance at the conference is over 9,000 and there is an associated industry exhibition with more than 700 companies. PC hosts approximately two dozen underrepresented students for four days of community building and professional development, most of whom are juniors or seniors in undergraduate programs, along with a smaller cohort of first-year students in graduate programs. The groups, consistently mixed in gender and ethnicity, get an opportunity for direct interaction with fellow PC participants, practitioners and academics, and leaders in the field and of the MTT society. This interaction is central to the success of the program, and the integration with IMS is representative of the important role that professional societies can play in diversifying STEM participation [1]. PC has been in operation since 2014 [2-5] and is sponsored jointly by the National Science Foundation and the IMS Organizing Committee. 
    more » « less
  4. Abstract This S_STEM project is designed to support the retention and graduation of high-achieving, low income students with demonstrated financial need at Baylor University. Over its five-year duration, this project will fund four-year scholarships to 22 students who are pursuing Bachelor degrees in Engineering, Electrical and Computer Engineering, Mechanical Engineering and Computer Science. Engineering and Computer Science (ECS) Scholars will participate in activities which include an orientation, a monthly seminar series and required faculty mentoring. Support services and activities for ECS Scholars build upon existing activities at Baylor and feature peer mentoring, study abroad opportunities, alumni mentoring, support and training for undergraduate research, professional development workshops, and tutoring support from the ECS Learning Resource Center. A distinguishing feature of the project is the use of EAB’s Navigate, a web-based software platform for tracking student progress, coordinating student care and employing predictive analytics. The expertise generated using a student dashboard capable of predictive analytics will have the broad impact of informing the STEM community of best practices for timely interventions, and improving retention and graduation rates. The Navigate platform is used for predictive analytics and to track and document ECS Scholar progress toward achieving benchmark goals in the areas of retention, graduation rates, internships, undergraduate research experiences, and job placement. The use of predictive analytics has significant potential for helping students arrive at successful outcomes. However, it is an assumption of this project that the successful use of predictive analytics should take into consideration not simply the accuracy in identifying students who are struggling but in the social attributions of success and perceptions of a “big data” tool that might be received alternatively with enthusiasm or suspicion. The focus of this paper will be to give an overview of our first-year results from the project. We were successful in recruiting the full first cohort that began in the Fall of 2020. For the first year, many of the engagement sessions with the students pivoted to a virtual experience, however, we were able to manage several events that fostered a sense of community among the ECS scholars. Our research partners from the Baylor School of Education were successful in conducting baseline qualitative research using detailed interviews with an initial focus on community fit, academic fit and faculty relationships. The paper will also summarize our use of the Navigate platform and the lessons learned in the areas of data capture and interventions. 
    more » « less
  5. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less