skip to main content


Title: The Cellular Prion Protein Controls Notch Signaling in Neural Stem/Progenitor Cells: PrP Controls Notch in Neural Stem/Progenitor Cells
NSF-PAR ID:
10029442
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
STEM CELLS
Volume:
35
Issue:
3
ISSN:
1066-5099
Page Range / eLocation ID:
754 to 765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell‐based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, “tissue chip” models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC‐interfacing, conductive materials closer to clinical translation are discussed.

     
    more » « less
  2. Abstract

    Adhesion to the microenvironment profoundly affects stem cell functions, including proliferation and differentiation, and understanding the interaction of stem cells with the microenvironment is important for controlling their behavior. In this study, we investigated the effects of the integrin binding epitopes GFOGER and IKVAV (natively present in collagen I and laminin, respectively) on human neural stem/progenitor cells (hNSPCs). To test the specificity of these epitopes, GFOGER or IKVAV were placed within the context of recombinant triple‐helical collagen III engineered to be devoid of native integrin binding sites. HNSPCs adhered to collagen that presented GFOGER as the sole integrin‐binding site, but not to IKVAV‐containing collagen. For the GFOGER‐containing collagens, antibodies against the β1 integrin subunit prevented cellular adhesion, antibodies against the α1 subunit reduced cell adhesion, and antibodies against α2 or α3 subunits had no significant effect. These results indicate that hNSPCs primarily interact with GFOGER through the α1β1 integrin heterodimer. These GFOGER‐presenting collagen variants also supported differentiation of hNSPCs into neurons and astrocytes. Our findings show, for the first time, that hNSPCs can bind to the GFOGER sequence, and they provide motivation to develop hydrogels formed from recombinant collagen variants as a cell delivery scaffold. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1363–1372, 2018.

     
    more » « less