skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability
Abstract Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9‐years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing seasonFCH4,GPPandNEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing seasonGPPin subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence onER, but dominant contribution toERswitched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter‐annual lag effects onERin this rich fen, as has been observed in several nutrient‐poor peatlands. WhileERwas dependent on soil temperatures at 2 cm depth,FCH4was linked to soil temperatures at 25 cm. Inter‐annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higherFCH4in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short‐term fluctuations in wetness caused significant lag effects onFCH4, but droughts caused no inter‐annual lag effects onFCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.  more » « less
Award ID(s):
1636476
PAR ID:
10030655
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
23
Issue:
6
ISSN:
1354-1013
Format(s):
Medium: X Size: p. 2428-2440
Size(s):
p. 2428-2440
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The current paradigm in peatland ecology is that the organic matter inputs from plant photosynthesis (e.g. moss litter) exceed that of decomposition, tipping the metabolic balance in favour of carbon (C) storage. Here, we investigated an alternative hypothesis, whereby exudates released by microalgae can actually accelerate C losses from the surface waters of northern peatlands by stimulating dissolved organic C (DOC) decomposition in a warmer environment expected with climate change. To test this hypothesis, we evaluated the biodegradability of fenDOCin a factorial design with and without algalDOCin both ambient (15°C) and elevated (20°C) water temperatures during a laboratory bioassay.WhenDOCsources were evaluated separately, decomposition rates were higher in treatments with algalDOConly than with fenDOConly, indicating that the quality of the organic matter influenced degradability. A mixture of substrates (½ algalDOC + ½ fenDOC) exceeded the expected level of biodegradation (i.e. the average of the individual substrate responses) by as much as 10%, and the magnitude of this effect increased to more than 15% with warming.Specific ultraviolet absorbance at 254 nm (SUVA254), a proxy for aromatic content, was also significantly higher (i.e. more humic) in the mixture treatment than expected from SUVA254values in single substrate treatments.Accelerated decomposition in the presence of algalDOCwas coupled with an increase in bacterial biomass, demonstrating that enhanced metabolism was associated with a more abundant microbial community.These results present an alternative energy pathway for heterotrophic consumers to breakdown organic matter in northern peatlands. Since decomposition in northern peatlands is often limited by the availability of labile organic matter, this mechanism could become increasingly important as a pathway for decomposition in the surface waters of northern peatlands where algae are expected to be more abundant in conditions associated with ongoing climate change. 
    more » « less
  2. Abstract Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate. 
    more » « less
  3. Societal Impact StatementThe invasive speciesS. alternifloraandP. australisare fast growing coastal wetland plants sequestering large amounts of carbon in the soil and protect coastlines against erosion and storm surges. In this global analysis, we found thatSpartinaandPhragmitesincrease methane but not nitrous oxide emissions, withPhragmiteshaving a lesser effect. The impact of the invasive species on emissions differed greatly among different types of native plant groups, providing valuable information to managers and policymakers during coastal wetland planning and restoration efforts. Further, our estimated net emissions per wetland plant group facilitate regional and national blue carbon estimates. SummaryGlobally,Spartina alternifloraandPhragmites australisare among the most pervasive invasive plants in coastal wetland ecosystems. Both species sequester large amounts of atmospheric carbon dioxide (CO2) and biogenic carbon in soils but also support production and emission of methane (CH4). In this study, we investigated the magnitude of their net greenhouse gas (GHG) release from invaded and non‐invaded habitats.We conducted a meta‐analysis of GHG fluxes associated with these two species and related soil carbon content and plant biomass in invaded coastal wetlands.Our results show that both invasive species increase CH4fluxes compared to uninvaded coastal wetlands, but they do not significantly affect CO2and N2O fluxes. The magnitude of emissions fromSpartinaandPhragmitesdiffers among native habitats. GHG fluxes, soil carbon and plant biomass ofSpartina‐invaded habitats were highest compared to uninvaded mudflats and succulent forb‐dominated wetlands, while being lower compared to uninvaded mangroves (except for CH4).This meta‐analysis highlights the important role of individual plant traits as drivers of change by invasive species on plant‐mediated carbon cycles. 
    more » « less
  4. Abstract The springtime transition to regional‐scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze–thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborneCO2from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two globalCO2inversions using aCASA‐GFEDmodel prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic‐onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available AlaskanCO2observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models orCO2inversions, with better correlation to above‐freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed. 
    more » « less
  5. Summary The response of vegetation to climate change has implications for the carbon cycle and global climate. It is frequently assumed that a species responds uniformly across its range to climate change. However, ecotypes − locally adapted populations within a species − display differences in traits that may affect their gross primary productivity (GPP) and response to climate change.To determine if ecotypes are important for understanding the response of ecosystem productivity to climate we measured and modeled growing seasonGPPin reciprocally transplanted and experimentally warmed ecotypes of the abundant Arctic sedgeEriophorum vaginatum.Transplanted northern ecotypes displayed home‐site advantage inGPPthat was associated with differences in leaf area index. Southern ecotypes exhibited a greater response inGPPwhen transplanted.The results demonstrate that ecotypic differentiation can impact the morphology and function of vegetation with implications for carbon cycling. Moreover they suggest that ecotypic control ofGPPmay limit the response of ecosystem productivity to climate change. This investigation shows that ecotypes play a substantial role in determiningGPPand its response to climate. These results have implications for understanding annual to decadal carbon cycling where ecotypes could influence ecosystem function and vegetation feedbacks to climate change. 
    more » « less