Strong-coupling Bose polarons in a Bose-Einstein condensate
- Award ID(s):
- 1734011
- PAR ID:
- 10031047
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review A
- Volume:
- 96
- Issue:
- 1
- ISSN:
- 2469-9926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The emergence of quasiparticles in interacting matter represents one of the cornerstones of modern physics. However, in the vicinity of a quantum critical point, the existence of quasiparticles comes under question. Here, we created Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using radiofrequency spectroscopy, we probed the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities formed well-defined quasiparticles. Their inverse lifetime, given by their spectral width, increased linearly with temperature at the so-called Planckian scale, consistent with quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeded the impurity’s binding energy, signaling a breakdown of the quasiparticle picture.more » « less
-
Even the particle world is not immune to identity politics. Bosons have been in a bit of an identity crisis, or so it has seemed since 1989 ( 1 ). Quantum mechanics requires bosons made of two paired electrons to either condense into a superfluid with a well-defined phase with zero electrical resistance or localize in an insulating state with infinite resistance. The direct transition from superconducting to insulating states was widely observed in a range of thin films ( 2 – 4 ). The most popular model for explaining these observations ( 5 ) claims that the destruction of superconductivity occurs when the resistance of the thin film exceeds a critical value. For bosons on the brink of localization, electrically insulating behavior is observed if the resistance is greater than the quantum of resistance, R q = h /4 e 2 , otherwise superconductivity persists, where h is Planck's constant and e is the electric charge. On page 1505 of this issue, Yang et al. ( 6 ) offer a counterexample by establishing that a bosonic metallic phase disrupts the superconductor-insulator transition (SIT) in the high-temperature superconductor YBa 2 Cu 3 O 7– x (YBCO).more » « less
An official website of the United States government
