skip to main content


Title: Aligning Coordination Class Theory With a New Context: Applying a Theory of Individual Learning to Group Learning: ALIGNING COORDINATION CLASS THEORY
NSF-PAR ID:
10031104
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Science Education
Volume:
101
Issue:
2
ISSN:
0036-8326
Page Range / eLocation ID:
333 to 363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Misteli, Tom (Ed.)
    Plants lack lamin proteins but contain a class of coiled-coil proteins that serve as analogues to form a laminal structure at the nuclear periphery. These nuclear matrix constituent proteins (NMCPs) play important roles in regulating nuclear morphology and are partitioned into two distinct groups. We investigated Arabidopsis NMCPs (called CRWNs) to study the interrelationship between the three NMCP1-type paralogues (CRWN1, 2, and 3) and the lone NMCP2-type paralogue, CRWN4. An examination of crwn mutants using protein immunoblots demonstrated that CRWN4 abundance depends on the presence of the NMCP1-type proteins, particularly CRWN1. The possibility that CRWN4 is coimported into the nucleus with nuclear localization signal (NLS)-bearing paralogues in the NMCP1-clade was discounted based on recovery of a crwn4-2 missense allele that disrupts a predicted NLS and lowers the abundance of CRWN4 in the nucleus. Further, a screen for mutations that suppress the effects of the crwn4-2 mutation led to the discovery of a missense allele, impa-1 G146E , in one of the nine importin-α genes in the Arabidopsis genome. Our results indicate that the CRWN4 carries a functional NLS that interacts with canonic nuclear import machinery. Once imported, the level of CRWN4 within the nucleus is modulated by the abundance of NMCP1 proteins. 
    more » « less
  2. null (Ed.)
  3. Abstract—Protein-protein interaction (PPI) network alignment has been motivating researches for the comprehension of the underlying crucial biological knowledge, such as conserved evolutionary pathways and functionally conserved proteins throughout different species. Existing PPI network alignment methods have tried to improve the coverage ratio by aligning all proteins from different species. However, there is a fundamental biological justification needed to be acknowledged, that not every protein in a species can, nor should, find homologous proteins in other species. In this paper, we propose a novel approach for multiple PPI network alignment that tries to align only those proteins with the most similarities. To provide more comprehensive supports in computing the similarity, we integrate structural features of the networks together with biological characteristics during the alignment. For the structural features, we apply on PPI networks a representation learning method, which creates a low-dimensional vector embedding with the surrounding topologies of each protein in the network. This approach quantifies the structural features, and provides a new way to determine the topological similarity of the networks by transferring which as calculations in vector similarities. We also propose a new metric for the topological evaluation which can better assess the topological quality of the alignment results across different networks. Both biological and topological evaluations demonstrate our approach is promising and preferable against previous multiple alignment methods. 
    more » « less
  4. Protein-protein interaction (PPI) network alignment has been motivating researches for the comprehension of the underlying crucial biological knowledge, such as conserved evolutionary pathways and functionally conserved proteins throughout different species. Existing PPI network alignment methods have tried to improve the coverage ratio by aligning all proteins from different species. However, there is a fundamental biological justification needed to be acknowledged, that not every protein in a species can, nor should, find homologous proteins in other species. In this paper, we propose a novel approach for multiple PPI network alignment that tries to align only those proteins with the most similarities. To provide more comprehensive supports in computing the similarity, we integrate structural features of the networks together with biological characteristics during the alignment. For the structural features, we apply on PPI networks a representation learning method, which creates a low-dimensional vector embedding with the surrounding topologies of each protein in the network. This approach quantifies the structural features, and provides a new way to determine the topological similarity of the networks by transferring which as calculations in vector similarities. We also propose a new metric for the topological evaluation which can better assess the topological quality of the alignment results across different networks. Both biological and topological evaluations demonstrate our approach is promising and preferable against previous multiple alignment methods. 
    more » « less