Many university engineering programs require their students to complete a senior capstone experience to equip them with the knowledge and skills they need to succeed after graduation. Such capstone experiences typically integrate knowledge and skills learned cumulatively in the degree program, often engaging students in projects outside of the classroom. As part of an initiative to completely transform the civil engineering undergraduate program at Clemson University, a capstone-like course sequence is being incorporated into the curriculum during the sophomore year. Funded by a grant from the National Science Foundation’s Revolutionizing Engineering Departments (RED) program, this departmental transformation (referred to as the Arch initiative) is aiming to develop a culture of adaptation and a curriculum support for inclusive excellence and innovation to address the complex challenges faced by our society. Just as springers serve as the foundation stones of an arch, the new courses are called “Springers” because they serve as the foundations of the transformed curriculum. The goal of the Springer course sequence is to expose students to the “big picture” of civil engineering while developing student skills in professionalism, communication, and teamwork through real-world projects and hands-on activities. The expectation is that the Springer course sequence will allow facultymore »
Initiation of Undergraduate Electrical Engineering Research at Lincoln University (PA)
This paper describes and discusses several recent faculty-student research activities at Lincoln University (PA), an HBCU. Specifically, it makes connections between NSF-sponsored faculty research and the projects that several undergraduate Engineering Science and Physics students have been working on. The Engineering Science is a relatively new major at Lincoln. New research experiences are particularly useful, so integrated learning is an attractive methodology for some of the engineering courses. The paper includes several case-studies detailing the student projects in connection to their academic progress. It also suggests the opportunities for our students upon graduation. The key findings of this study are that the research activities enabled by this research initiation grant are sufficiently diverse; they provide necessary supplements for the courses taught to students who specialize in electrical engineering. Research experiences that students get through this project are particularly useful for their future graduate studies and industry careers.
- Award ID(s):
- 1505377
- Publication Date:
- NSF-PAR ID:
- 10032714
- Journal Name:
- Journal of modern education review
- Volume:
- 7
- Issue:
- 3
- Page Range or eLocation-ID:
- 179-184
- ISSN:
- 2155-7993
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The NSF S-STEM funded SPIRIT: Scholarship Program Initiative via Recruitment, Innovation, and Transformation program at Western Carolina University creates a new approach to the recruitment, retention, education, and placement of academically talented and financially needy engineering and engineering technology students. Twenty-seven new and continuing students were recruited into interdisciplinary cohorts that are being nurtured and developed in a community characterized by extensive peer and faculty mentoring, vertically integrated Project Based Learning (PBL), and undergraduate research experiences. The SPIRIT Scholar program attracted a diverse group of Engineering and Engineering Technology students, thus increasing the percentage of female and minority student participation as compared to the host department program demographics. Over the last academic year, fifty-four undergraduate research projects/activities were conducted by the twenty-seven scholars under the direction of twelve faculty fellows. Additionally, peer-to-peer mentorship and student leadership were developed through the program’s vertically integrated PBL model, which incorporated four courses and seven small-group design projects. Academic and professional support for the student scholars were administered through collaborations with several offices at the host institution, including an industry-engaged product development center. The program participants reported strong benefits from engaging in the program activities during the first year. Specifically, this paper presents resultsmore »
-
ABSTRACT In order to provide students with the training required to meet the substantial and diverse challenges of the 21 st Century, effective programs in engineering, science, and technology must continue to take the lead in developing high-impact educational practices. Over the past year, faculty across several departments collaborated in the establishment of a campus 3D printing and fabrication center. This facility was founded to offer opportunities for exploring innovative active learning strategies in order to enhance the lives of Wabash College students and serve as a model to other institutions of higher education. This campus resource provides the infrastructure that will empower faculty and staff to explore diverse and meaningful cross-disciplinary collaborations related to teaching and learning across campus. New initiatives include the development of courses on design and fabrication, collaborative cross-disciplinary projects that bridge courses in the arts and sciences, 3D printing and fabrication-based undergraduate research internships, and entrepreneurial collaborations with local industry. These innovative approaches are meant to open the door to greater active learning experiences that empower and prepare students for creative and practical problem solving. Furthermore, service learning projects, community-based opportunities, and global outreach initiatives provide students with a sense of social responsibility, ethical awareness,more »
-
This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findingsmore »
-
The drive to encourage young people to pursue degrees and careers in engineering has led to an increase in student populations in engineering programs. For some institutions, such as large public research institutions, this has led to large class sizes for courses that are commonly taken across multiple programs. While this decision is reasonable from an operational and resource management perspective, research on large classes have shown that students suffer decreased engagement, motivation and achievement. Instructors, on the other hand, report having difficulty establishing rapport with their students and a growing inability to monitor students’ learning gains and provide quality individualized feedback. To address these issues, our project draws from Lattuca and Stark’s Academic Plan model, which incorporates a thorough consideration of factors influencing curricular activities that can be applied at the course, program, and institutional levels, and assumes that instructors are key actors in curriculum development and revision. We aim to revitalize feedback loops to help instructors and departments continuously improve. Recognizing that we must understand both individual and systems level perspectives, we prioritize regular engagement between faculty and institutional support structures to collaboratively identify problems and systematically establish continuous improvement. In the first phase of this NSF IUSEmore »