skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis
Many living organisms track the 24-hour cycle of day and night via collections of proteins and other molecules that together act like an internal clock. These clocks, also known as circadian clocks, help these organisms to predict regular changes in their environment, like light and temperature, and adjust their activities according to the time of day. Plants use circadian clocks to predict, for example, when dawn will occur and get ready to harness sunlight to fuel their growth. A plant called Arabidopsis thaliana has a light-sensitive protein called ZEITLUPE (or ZTL for short) that helps it keep its circadian clock in sync with the cycle of night and day. Previous studies have shown that light activates this protein causing part of it to change shape and then revert back after a period of about an hour and a half. However, it was unclear if this timing was important for ZEITLUPE to allow plants to keep track of time. To help answer this question, Pudasaini et al. set out to identify a specific chemical event behind ZEITLUPE’s changes in shape. A chemical bond forms when light activates ZEITLUPE, and it turns out that how long this bond lasts before it breaks plays an important role in allowing plants to maintain a 24-hour circadian clock. This chemical bond controls the shape changes that guide the protein’s activities and, when Pudasaini et al. modified ZEITLUPE so that it took much longer for this bond to break, they could tune how fast the plant’s internal clocks run. In essence, the time between the bond forming and breaking breaks acts like a countdown on a stopwatch, and it must be precisely timed to keep the clock in pace with the environment. These findings improve our understanding of how light can regulate an internal biological clock. This improved understanding could, in the future, allow researchers to manipulate how plants and other organisms respond to their environment. This in turn could change how these organisms develop, and how much they grow. As such, extending these findings into agricultural crops may one day lead to new ways to increase crop yields.  more » « less
Award ID(s):
1613643
PAR ID:
10033738
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
6
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heck, Michelle (Ed.)
    ABSTRACT Plant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal “clock,” and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustardBoechera strictahas wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype. IMPORTANCEWe find that the rhizosphere microbiome shifts in composition and extractable DNA concentration in sub-24-hour periods as influenced by the plant host’s internal clock. These results suggest that host plant clock phenotypes could be an important determinant of variation in rhizosphere microbiomes. 
    more » « less
  2. null (Ed.)
    Like animals, plants have internal biological clocks that allow them to adapt to daily and yearly changes, such as day-night cycles or seasons turning. Unlike animals, however, plants cannot move when their environment becomes different, so they need to be able to weather these changes by adjusting which genes they switch on and off. To do this, plants keep track of how long days are using external cues such as light or temperature. One of the effects of climate change is that these cues become less reliable, making it harder for plants to adapt to their environment and survive. This is a potential problem for crop species, like Brassica rapa . This plant has many edible forms, including Chinese cabbage, oilseed, pak choi, and turnip. It is also a close relative of the well-studied model plant, Arabidopsis . Since evolving away from Arabidopsis , the genome of B. rapa tripled, meaning it has one, two, or three copies of each gene. This has allowed the extra gene copies to mutate and adapt to different purposes. The question is, what impact has this genome expansion had on the plant's biological clock? One way to find out is to perform RNA-sequencing experiments, which record the genes a plant is using at any one time. Here, Greenham, Sartor et al. report the results of a series of RNA-sequencing experiments performed every two hours across two days. Plants were first exposed to light-dark or temperature cycles and then samples were taken when the plants were in constant light and temperature. This revealed which genes B. rapa turned on and off in response to signals from the internal biological clock. It turns out that the biological clock of B. rapa controls close to three quarters of its genes. These genes showed distinct phases, increasing or decreasing in regular patterns. But the different copies of duplicated and triplicated genes did not necessarily all behave in the same way. Many of the copies had different rhythms, and some increased and decreased in patterns totally opposite to their counterparts. Not only did the daily patterns differ, but responses to stressors like drought were also altered. Comparing these patterns to the patterns seen in Arabidopsis revealed that often, one B. rapa gene behaved just like its Arabidopsis equivalent, while its copies had evolved new behaviors. The different behaviors of the copies of each gene in B. rapa relative to its biological clock allow this plant to grow in different environments with varying temperatures and day lengths. Understanding how these adaptations work opens new avenues of research into how plants detect and respond to environmental signals. This could help to guide future work into targeting genes to improve crop growth and stress resilience. 
    more » « less
  3. Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth’s day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive. Here, we uncovered the coexistence of redox and genetic rhythms with distinct period lengths and transcriptional targets through concurrent metabolic and transcriptional time-course measurements in anArabidopsislong-period clock mutant. Analysis of the target genes indicated regulation of the immune-induced programmed cell death (PCD) by the redox rhythm. Moreover, this time-of-day-sensitive PCD was eliminated by redox perturbations and by blocking the signaling pathway of the plant defense hormones jasmonic acid/ethylene, while remaining intact in genetic clock-defective backgrounds. This study shows that compared to robust genetic clocks, the more sensitive circadian redox rhythm serves as a signaling hub in regulating incidental energy-intensive processes, such as immune-induced PCD involving reprogramming of chloroplast and mitochondria activities, to provide organisms a flexible strategy to mitigate metabolic overload during stress responses. 
    more » « less
  4. The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-hour periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention. 
    more » « less
  5. Biological clocks are evolved time-keeping systems by which organisms rhythmically coordinate physiology within the body, and align it with rhythms in their environment. Clocks are highly sensitive to light and are at the interface of several major endocrine pathways. Worryingly, exposure to artificial-light-at-night (ALAN) is rapidly increasing in ever more extensive parts of the world, with likely impact on wild organisms mediated by endocrine–circadian pathways. In this overview, we first give a broad-brush introduction to biological rhythms. Then, we outline interactions between the avian clock, endocrine pathways, and environmental and internal modifiers. The main focus of this review is on the circadian hormone, melatonin. We summarize information from avian field and laboratory studies on melatonin and its relationships with behaviour and physiology, including often neglected developmental aspects. When exposed to ALAN, birds are highly vulnerable to disruption of behavioural rhythms and of physiological systems under rhythmic control. Several studies suggest that melatonin is likely a key mediator for a broad range of effects. We encourage further observational and experimental studies of ALAN impact on melatonin, across the full functional range of this versatile signalling molecule, as well as on other candidate compounds at the endocrine–circadian interface. This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’. 
    more » « less