Abstract The circadian clock helps organisms to anticipate and coordinate gene regulatory responses to changes in environmental stimuli. Under stresses, both time of day and the circadian clock closely control the magnitude of plant responses. The identification of clock-regulated genes is, therefore, important when studying the influence of environmental factors. Here, we present CAST-R (Circadian And heat STress-Responsive), a “Shiny” application that allows users to identify and visualize circadian and heat stress-responsive genes in plants. More specifically, users can generate and export profiles and heatmaps representing transcript abundance of a single or of multiple Arabidopsis (Arabidopsis thaliana) genes over a 24-h time course, in response to heat stress and during recovery following the stress. The application also takes advantage of published Arabidopsis chromatin immunoprecipitation-sequencing datasets to visualize the connections between clock proteins and their targets in an interactive network. In addition, CAST-R offers the possibility to perform phase (i.e. timing of expression) enrichment analyses for rhythmic datasets from any species, within and beyond plants. This functionality combines statistical analyses and graphical representations to identify significantly over- and underrepresented phases within a subset of genes. Lastly, profiles of transcript abundance can be visualized from multiple circadian datasets generated in Arabidopsis, Brassica rapa, barley (Hordeum vulgare), and rice (Oryza sativa). In summary, CAST-R is a user-friendly interface that allows the rapid identification of circadian and stress-responsive genes through multiple modules of visualization. We anticipate that this tool will make it easier for users to obtain temporal and dynamic information on genes of interest that links plant responses to environmental signals.
more »
« less
Expansion of the circadian transcriptome in Brassica rapa and genome-wide diversification of paralog expression patterns
Like animals, plants have internal biological clocks that allow them to adapt to daily and yearly changes, such as day-night cycles or seasons turning. Unlike animals, however, plants cannot move when their environment becomes different, so they need to be able to weather these changes by adjusting which genes they switch on and off. To do this, plants keep track of how long days are using external cues such as light or temperature. One of the effects of climate change is that these cues become less reliable, making it harder for plants to adapt to their environment and survive. This is a potential problem for crop species, like Brassica rapa . This plant has many edible forms, including Chinese cabbage, oilseed, pak choi, and turnip. It is also a close relative of the well-studied model plant, Arabidopsis . Since evolving away from Arabidopsis , the genome of B. rapa tripled, meaning it has one, two, or three copies of each gene. This has allowed the extra gene copies to mutate and adapt to different purposes. The question is, what impact has this genome expansion had on the plant's biological clock? One way to find out is to perform RNA-sequencing experiments, which record the genes a plant is using at any one time. Here, Greenham, Sartor et al. report the results of a series of RNA-sequencing experiments performed every two hours across two days. Plants were first exposed to light-dark or temperature cycles and then samples were taken when the plants were in constant light and temperature. This revealed which genes B. rapa turned on and off in response to signals from the internal biological clock. It turns out that the biological clock of B. rapa controls close to three quarters of its genes. These genes showed distinct phases, increasing or decreasing in regular patterns. But the different copies of duplicated and triplicated genes did not necessarily all behave in the same way. Many of the copies had different rhythms, and some increased and decreased in patterns totally opposite to their counterparts. Not only did the daily patterns differ, but responses to stressors like drought were also altered. Comparing these patterns to the patterns seen in Arabidopsis revealed that often, one B. rapa gene behaved just like its Arabidopsis equivalent, while its copies had evolved new behaviors. The different behaviors of the copies of each gene in B. rapa relative to its biological clock allow this plant to grow in different environments with varying temperatures and day lengths. Understanding how these adaptations work opens new avenues of research into how plants detect and respond to environmental signals. This could help to guide future work into targeting genes to improve crop growth and stress resilience.
more »
« less
- Award ID(s):
- 1711662
- PAR ID:
- 10229845
- Date Published:
- Journal Name:
- eLife
- Volume:
- 9
- ISSN:
- 2050-084X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.more » « less
-
Plants have evolved with complex sensory systems to recognize signals from multiple environmental conditions. A light signal is one of the most important environmental factors that regulates not only photomorphogenesis but also the developmental strategy of plants throughout their life cycle. The molecular mechanisms of the light signaling modules and the interactions between light and other environmental signals have been studied extensively. However, to enhance plant growth, particularly in crop production, we need to gain a deeper understanding of how light regulates plant development within gene regulatory networks (GRNs). Understanding GRNs is important to identify not only the novel genes and transcription factors in light signaling pathways but also the factors that connect light signaling and other environmental signals. Weighted gene co-expression network analysis (WGCNA) has been used to study GRN. We applied WGCNA to 58 RNA-seq samples of wild-type Arabidopsis grown under different light treatments and built the gene co-expression networks. We identified 14 different modules that are significantly associated with different light treatments. Among them, the honeydew1 and ivory display significant association with the dark-grown seedlings. Many hub genes identified from these modules are significantly enriched in light responses, including responses to red, far-red, blue light, light stimulus, auxin responses, and photosynthesis. Although we found many known transcription factors in these modules, we also identified several unknown genes and transcription factors that are significantly associated with the honeydew1 module and highly differentially expressed between dark and light conditions. To examine whether the hub genes in the honeydew1 module play a role in light signaling, we isolated mutants in selected hub genes and measured hypocotyl lengths under dark, red, and far-red light conditions. These assays showed that four hub genes are involved in regulating light signaling pathways. This study provides a new approach to identifying novel genes in GRNs underlying light responses in Arabidopsis.more » « less
-
Abstract The circadian clock is an internal molecular oscillator and coordinates numerous physiological processes through regulation of molecular pathways. Tissue‐specific clocks connected by mobile signals have previously been found to run at different speeds inArabidopsis thalianatissues. However, tissue variation in circadian clocks in crop species is unknown. In this study, leaf and tuber global gene expression in cultivated potato under cycling and constant environmental conditions was profiled. In addition, we used a circadian‐regulated luciferase reporter construct to study tuber gene expression rhythms. Diel and circadian expression patterns were present among 17.9% and 5.6% of the expressed genes in the tuber. Over 500 genes displayed differential tissue specific diel phases. Intriguingly, few core circadian clock genes had circadian expression patterns, while all such genes were circadian rhythmic in cultivated tomato leaves. Furthermore, robust diel and circadian transcriptional rhythms were observed among detached tubers. Our results suggest alternative regulatory mechanisms and/or clock composition is present in potato, as well as the presence of tissue‐specific independent circadian clocks. We have provided the first evidence of a functional circadian clock in below‐ground storage organs, holding important implications for other storage root and tuberous crops.more » « less
-
Many living organisms track the 24-hour cycle of day and night via collections of proteins and other molecules that together act like an internal clock. These clocks, also known as circadian clocks, help these organisms to predict regular changes in their environment, like light and temperature, and adjust their activities according to the time of day. Plants use circadian clocks to predict, for example, when dawn will occur and get ready to harness sunlight to fuel their growth. A plant called Arabidopsis thaliana has a light-sensitive protein called ZEITLUPE (or ZTL for short) that helps it keep its circadian clock in sync with the cycle of night and day. Previous studies have shown that light activates this protein causing part of it to change shape and then revert back after a period of about an hour and a half. However, it was unclear if this timing was important for ZEITLUPE to allow plants to keep track of time. To help answer this question, Pudasaini et al. set out to identify a specific chemical event behind ZEITLUPE’s changes in shape. A chemical bond forms when light activates ZEITLUPE, and it turns out that how long this bond lasts before it breaks plays an important role in allowing plants to maintain a 24-hour circadian clock. This chemical bond controls the shape changes that guide the protein’s activities and, when Pudasaini et al. modified ZEITLUPE so that it took much longer for this bond to break, they could tune how fast the plant’s internal clocks run. In essence, the time between the bond forming and breaking breaks acts like a countdown on a stopwatch, and it must be precisely timed to keep the clock in pace with the environment. These findings improve our understanding of how light can regulate an internal biological clock. This improved understanding could, in the future, allow researchers to manipulate how plants and other organisms respond to their environment. This in turn could change how these organisms develop, and how much they grow. As such, extending these findings into agricultural crops may one day lead to new ways to increase crop yields.more » « less
An official website of the United States government

