skip to main content


Title: Xenopus as a model for studies in mechanical stress and cell division
Abstract

We exist in a physical world, and cells within biological tissues must respond appropriately to both environmental forces and forces generated within the tissue to ensure normal development and homeostasis. Cell division is required for normal tissue growth and maintenance, but both the direction and rate of cell division must be tightly controlled to avoid diseases of over‐proliferation such as cancer. Recent studies have shown that mechanical cues can cause mitotic entry and orient the mitotic spindle, suggesting that physical force could play a role in patterning tissue growth. However, to fully understand how mechanics guides cellsin vivo, it is necessary to assess the interaction of mechanical strain and cell division in a whole tissue context. In this mini‐review we first summarise the body of work linking mechanics and cell division, before looking at the advantages that theXenopusembryo can offer as a model organism for understanding: (1) the mechanical environment during embryogenesis, and (2) factors important for cell division. Finally, we introduce a novel method for applying a reproducible strain toXenopusembryonic tissue and assessing subsequent cell divisions.

 
more » « less
NSF-PAR ID:
10033780
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
genesis
Volume:
55
Issue:
1-2
ISSN:
1526-954X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Epithelial tissues adapt their form and function following mechanical perturbations, or mechano-adapt, and these changes often result in reactive forces that oppose the direction of the applied change. Tissues subjected to ectopic tensions, for example, employ behaviors that lower tension, such as increasing proliferation or actomyosin turnover. This oppositional behavior suggests that the tissue has a mechanical homeostasis. Whether attributed to maintenance of cellular area, cell density, or cell and tissue tensions, epithelial mechanical homeostasis has been implicated in coordinating embryonic morphogenesis, wound healing, and maintenance of adult tissues. Despite advances toward understanding the feedback between mechanical state and tissue response in epithelia, more work remains to be done to examine how tissues regulate mechanical homeostasis using epithelial sheets with defined micropatterned shapes. Here, we used cellular microbiaxial stretching (CμBS) to investigate mechano-adaptation in micropatterned tissues of different shape consisting of Madin–Darby canine kidney cells. Using the CμBS platform, tissues were subjected to a 30% stretch that was held for 24 h. We found that, following stretch, tissue stresses immediately increased then slowly evolved over time, approaching their pre-stretch values by 24 h. Organization of the actin cytoskeletal was found to play a role in this process: anisotropic ally structured tissues exhibited anisotropic stress patterns, and the cytoskeletal became more aligned following stretch and reorganized over time. Interestingly, in unstretched tissues, stresses also decreased, which was found to be driven by proliferation-induced cellular confinement and change in tissue thickness. We modeled these behaviors with a continuum-based model of epithelial growth that accounted for stress-induced actin remodeling and proliferation, and found this model to strongly capture experimental behavior. Ultimately, this combined experimental-modeling approach suggests that epithelial mechano-adaptation depends on cellular architecture and proliferation, which can be modeled with a field-averaged approach applicable to more specific contexts in which change is driven by epithelial mechanical homeostasis.

    Insight box Epithelial tissues adapt their form and function following mechanical perturbation, and it is thought that this ‘mechano-adaptation’ plays an important role in driving processes like embryonic morphogenesis, wound healing, and adult tissue maintenance. Here, we use cellular microbiaxial stretching to probe this process in vitro in small epithelial tissues whose geometries were both controlled and varied. By using a highly precise stretching device and a continuum mechanics modeling framework, we revealed that tissue mechanical state changes following stretch and over time, and that this behavior can be explained by stress-dependent changes in actin fibers and proliferation. Integration of these approaches enabled a systematic approach to empirically and precisely measure these phenomena.

     
    more » « less
  2. Abstract

    The model moss,Physcomitrium patens, is routinely cultured on cellophane placed over a solid nutrient medium. While this culture method is convenient for moss propagation, it is not suitable for studying how topographical features and mechanical cues from the environment influence the growth and development of moss. Here, we show thatP. patenscan be grown on fibrous scaffolds consisting of nanoscale, randomly oriented fibers composed of polyvinylidene tri‐fluoroethylene (NRP). The moss adheres tightly to NRP in contrast to the lack of adhesion to cellophane. Adhesion to the scaffold is associated with slower tip growth of moss protonema for some time, followed by an increase in tip growth rate that is equivalent to that on cellophane. In addition, the orientation of the first subapical cell division plane differs between NRP‐grown and cellophane‐grown protonema. Nonetheless, moss colonies grown on NRP did not show signs of nutrient or photosynthetic stress and developed normal gametophores. Together, these data establish NRP as a suitable substrate for the culture ofP. patensand to probe the influence of mechanical forces on tip growth and cell division of moss.

     
    more » « less
  3. Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.

     
    more » « less
  4. Abstract

    Cell elongation along the division axis, or mitotic elongation, mediates proper segregation of chromosomes and other intracellular materials, and is required for completion of cell division. In three‐dimensionally confining extracellular matrices, such as dense collagen gels, dividing cells must generate space to allow mitotic elongation to occur. In principle, cells can generate space for mitotic elongation during cell spreading, prior to mitosis, or via extracellular force generation or matrix degradation during mitosis. However, the processes by which cells drive mitotic elongation in collagen‐rich extracellular matrices remains unclear. Here, it is shown that single cancer cells generate substantial pushing forces on the surrounding collagen extracellular matrix to drive cell division in confining collagen gels and allow mitotic elongation to proceed. Neither cell spreading, prior to mitosis, nor matrix degradation, during spreading or mitotic elongation, are found to be required for mitotic elongation. Mechanistically, laser ablation studies, pharmacological inhibition studies, and computational modeling establish that pushing forces generated during mitosis in collagen gels arise from a combination of interpolar spindle elongation and cytokinetic ring contraction. These results reveal a fundamental mechanism mediating cell division in confining extracellular matrices, providing insight into how tumor cells are able to proliferate in dense collagen‐rich tissues.

     
    more » « less
  5. Abstract

    Characterizing the mechanical properties of single cells is important for developing descriptive models of tissue mechanics and improving the understanding of mechanically driven cell processes. Standard methods for measuring single‐cell mechanical properties typically provide isotropic mechanical descriptions. However, many cells exhibit specialized geometriesin vivo, with anisotropic cytoskeletal architectures reflective of their function, and are exposed to dynamic multiaxial loads, raising the need for more complete descriptions of their anisotropic mechanical properties under complex deformations. Here, we describe the cellular microbiaxial stretching (CμBS) assay in which controlled deformations are applied to micropatterned cells while simultaneously measuring cell stress. CμBS utilizes a set of linear actuators to apply tensile or compressive, short‐ or long‐term deformations to cells micropatterned on a fluorescent bead‐doped polyacrylamide gel. Using traction force microscopy principles and the known geometry of the cell and the mechanical properties of the underlying gel, we calculate the stress within the cell to formulate stress‐strain curves that can be further used to create mechanical descriptions of the cells, such as strain energy density functions. © 2022 Wiley Periodicals LLC.

    Basic Protocol 1: Assembly of CμBS stretching constructs

    Basic Protocol 2: Polymerization of micropatterned, bead‐doped polyacrylamide gel on an elastomer membrane

    Support Protocol: Cell culture and seeding onto CμBS constructs

    Basic Protocol 3: Implementing CμBS stretching protocols and traction force microscopy

    Basic Protocol 4: Data analysis and cell stress measurements

     
    more » « less