Abstract Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral coloniesex situand transplant them to degraded reef areas to augment habitat for reef‐dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such “demographic restoration” efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such “assisted evolution” strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco‐evolutionary simulation model. We found that supplementing reefs with pre‐existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long‐term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat‐tolerant genotypes.
more »
« less
Shifting paradigms in restoration of the world's coral reefs
Abstract Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.
more »
« less
- Award ID(s):
- 1637396
- PAR ID:
- 10033932
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 3437-3448
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs.more » « less
-
Anthropogenic stressors pose substantial threats to the existence of coral reefs. Achieving successful coral recruitment stands as a bottleneck in reef restoration and hybrid reef engineering efforts. Here, we enhance coral settlement through the development of biomimetic microhabitats that replicate the chemical landscape of healthy reefs. We engineered a soft biomaterial, SNAP-X, comprising silica nanoparticles (NPs), biopolymers, and algal exometabolites, to enrich reef microhabitats with bioactive molecules from crustose coralline algae (CCA). Coral settlement was enhanced over 20-fold using SNAP-X-coated substrates compared with uncoated controls. SNAP-X is designed to release chemical signals slowly (>1 month) under natural seawater conditions, and can be rapidly applied to natural reef substrates via photopolymerization, facilitating the light-assisted 3D printing of microengineered habitats. We anticipate that these biomimetic chemical microhabitats will be widely used to augment coral settlement on degraded reefs and to support ecosystem processes on hybrid reefs.more » « less
-
Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleach- ing event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.more » « less
-
Abstract Coral reefs are in global decline with coral diseases playing a significant role. This is especially true for Acroporid corals that represent ~25% of all Pacific coral species and generate much of the topographic complexity supporting reef biodiversity. Coral diseases are commonly sediment-associated and could be exacerbated by overharvest of sea cucumber detritivores that clean reef sediments and may suppress microbial pathogens as they feed. Here we show, via field manipulations in both French Polynesia and Palmyra Atoll, that historically overharvested sea cucumbers strongly suppress disease among corals in contact with benthic sediments. Sea cucumber removal increased tissue mortality ofAcropora pulchraby ~370% and colony mortality by ~1500%. Additionally, farmerfish that killAcropora pulchrabases to culture their algal gardens further suppress disease by separating corals from contact with the disease-causing sediment—functioning as mutualists rather than parasites despite killing coral bases. Historic overharvesting of sea cucumbers increases coral disease and threatens the persistence of tropical reefs. Enhancing sea cucumbers may enhance reef resilience by suppressing disease.more » « less
An official website of the United States government
