skip to main content


Title: Effect of fuel deposition rate on departure fuel load of migratory songbirds during spring stopover along the northern coast of the Gulf of Mexico
NSF-PAR ID:
10034139
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Avian Biology
Volume:
48
Issue:
1
ISSN:
0908-8857
Page Range / eLocation ID:
123 to 132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present hardware and firmware design and preliminary testing results for a noninvasive device for measuring fuel oil consumption in fuel oil vented heaters. Fuel oil vented heaters are a popular space heating method in northern climates. Monitoring fuel consumption is useful to understanding residential daily and seasonal heating patterns and understanding the thermal characteristics of buildings. The device is a pump monitoring apparatus (PuMA) that employs a magnetoresistive sensor to monitor the activity of solenoid driven positive displacement pumps, which are commonly used in fuel oil vented heaters. PuMA accuracy for calculating fuel oil consumption was evaluated in a lab setting and found to vary up to 7% from the measured consumption value during testing. This variance will be explored more in field testing.

     
    more » « less
  2. null (Ed.)
  3. In the present study, the flow inside a real size Diesel fuel injector nozzle was modeled and analyzed under different boundary conditions using ANSYS-Fluent software. A validation was performed by comparing our numerical results with previous experimental data for a rectangular shape nozzle. Schnerr-Sauer cavitation model, which was selected for this study, was also validated. Two-equation k-ε turbulence model was selected since it had good agreement with experimental data. To reduce the computing time, due to symmetry of this nozzle, only one-sixth of this nozzle was modeled. Our present six-hole Diesel injector nozzle was modeled with different needle lifts including 30 μm, 100 μm and 250 μm. Effects of different needle lifts on mass flow rate, discharge coefficient and length of cavitation were evaluated comprehensively. Three different fuels including one Diesel fuel and two bio-Diesel fuels were also included in these numerical simulations. Behavior of these fuels was investigated for different needle lifts and pressure differences. For comparing the results, discharge coefficient, mass flow rate and length of cavitation region were compared under different boundary conditions and for several fuel types. The extreme temperature spike at the center of an imploding cavitation bubble was also analyzed as a function of time and initial bubble size. 
    more » « less