skip to main content


Title: In‐Plane 2H‐1T′ MoTe 2 Homojunctions Synthesized by Flux‐Controlled Phase Engineering

The fabrication of in‐plane 2H‐1T′ MoTe2homojunctions by the flux‐controlled, phase‐engineering of few‐layer MoTe2from Mo nanoislands is reported. The phase of few‐layer MoTe2is controlled by simply changing Te atomic flux controlled by the temperature of the reaction vessel. Few‐layer 2H MoTe2is formed with high Te flux, while few‐layer 1T′ MoTe2is obtained with low Te flux. With medium flux, few‐layer in‐plane 2H‐1T′ MoTe2homojunctions are synthesized. As‐synthesized MoTe2is characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. Kelvin probe force microscopy and Raman mapping confirm that in‐plane 2H‐1T′ MoTe2homojunctions have abrupt interfaces between 2H and 1T′ MoTe2domains, possessing a potential difference of about 100 mV. It is further shown that this method can be extended to create patterned metal–semiconductor junctions in MoTe2in a two‐step lithographic synthesis. The flux‐controlled phase engineering method could be utilized for the large‐scale controlled fabrication of 2D metal–semiconductor junctions for next‐generation electronic and optoelectronic devices.

 
more » « less
NSF-PAR ID:
10034462
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
29
Issue:
16
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This work reports experimental demonstrations of reversible crystalline phase transition in ultrathin molybdenum ditelluride (MoTe2) controlled by thermal and mechanical mechanisms on the van der Waals (vdW) nanoelectromechanical systems (NEMS) platform, with hexagonal boron nitride encapsulated MoTe2structure residing on top of graphene layer. Benefiting from very efficient electrothermal heating and straining effects in the suspended vdW heterostructures, MoTe2phase transition is triggered by rising temperature and strain level. Raman spectroscopy monitors the MoTe2crystalline phase signatures in situ and clearly records reversible phase transitions between hexagonal 2H (semiconducting) and monoclinic 1T′ (metallic) phases. Combined with Raman thermometry, precisely measured nanomechanical resonances of the vdW devices enable the determination and monitoring of the strain variations as temperature is being regulated by electrothermal control. These results not only deepen the understanding of MoTe2phase transition, but also demonstrate a novel platform for engineering MoTe2phase transition and multiphysical devices.

     
    more » « less
  2. Abstract

    Piezoelectricity in low‐dimensional materials and metal–semiconductor junctions has attracted recent attention. Herein, a 2D in‐plane metal–semiconductor junction made of multilayer 2H and 1T′ phases of molybdenum(IV) telluride (MoTe2) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H–1T′ junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials.

     
    more » « less
  3. Among group VI transition metal dichalcogenides, MoTe 2 is predicted to have the smallest energy offset between semiconducting 2H and semimetallic 1T′ states. This makes it an attractive phase change material for both electronic and optoelectronic applications. Here, we report fast, nondestructive, and full phase change in Al 2 O 3 -encapsulated 2H-MoTe 2 thin films to 1T′-MoTe 2 using rapid thermal annealing at 900 °C. Phase change was confirmed using Raman spectroscopy after a short annealing duration of 10 s in both vacuum and nitrogen ambient. No thickness dependence of the transition temperatures was observed for flake thickness ranging from 1.5 to 8 nm. These results represent a major step forward in understanding the structural phase transition properties of MoTe 2 thin films using external heating and underline the importance of surface encapsulation for avoiding thin film degradation. 
    more » « less
  4. Two-dimensional (2D) molybdenum ditelluride (MoTe 2 ) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe 2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe 2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe 2 , and different chemical kinetics-guided strategies have been developed to grow MoTe 2 flakes and films. 
    more » « less
  5. Abstract Monolayer molybdenum disulfide (MoS 2 ) is one of the most studied two-dimensional (2D) transition metal dichalcogenides that is being investigated for various optoelectronic properties, such as catalysis, sensors, photovoltaics, and batteries. One such property that makes this material attractive is the ease in which 2D MoS 2 can be converted between the semiconducting (2H) and metallic/semi-metallic (1T/1T′) phases or heavily n-type doped 2H phase with ion intercalation, strain, or excess negative charge. Using n -butyl lithium (BuLi) immersion treatments, we achieve 2H MoS 2 monolayers that are heavily n-type doped with shorter immersion times (10–120 mins) or conversion to the 1T/1T′ phase with longer immersion times (6–24 h); however, these doped/converted monolayers are not stable and promptly revert back to the initial 2H phase upon exposure to air. To overcome this issue and maintain the modification of the monolayer MoS 2 upon air exposure, we use BuLi treatments plus surface functionalization p-(CH 3 CH 2 ) 2 NPh-MoS 2 (Et 2 N-MoS 2 )—to maintain heavily n-type doped 2H phase or the 1T/1T′ phase, which is preserved for over two weeks when on indium tin oxide or sapphire substrates. We also determine that the low sheet resistance and metallic-like properties correlate with the BuLi immersion times. These modified MoS 2 materials are characterized with confocal Raman/photoluminescence, absorption, x-ray photoelectron spectroscopy as well as scanning Kelvin probe microscopy, scanning electrochemical microscopy, and four-point probe sheet resistance measurements to quantify the differences in the monolayer optoelectronic properties. We will demonstrate chemical methodologies to control the modified monolayer MoS 2 that likely extend to other 2D transition metal dichalcogenides, which will greatly expand the uses for these nanomaterials. 
    more » « less