skip to main content


Title: Toward understanding the phase-selective growth mechanism of films and geometrically-shaped flakes of 2D MoTe 2
Two-dimensional (2D) molybdenum ditelluride (MoTe 2 ) is an interesting material for fundamental study and applications, due to its ability to exist in different polymorphs of 2H, 1T, and 1T′, their phase change behavior, and unique electronic properties. Although much progress has been made in the growth of high-quality flakes and films of 2H and 1T′-MoTe 2 phases, phase-selective growth of all three phases remains a huge challenge, due to the lack of enough information on their growth mechanism. Herein, we present a novel approach to growing films and geometrical-shaped few-layer flakes of 2D 2H-, 1T-, and 1T′-MoTe 2 by atmospheric-pressure chemical vapor deposition (APCVD) and present a thorough understanding of the phase-selective growth mechanism by employing the concept of thermodynamics and chemical kinetics involved in the growth processes. Our approach involves optimization of growth parameters and understanding using thermodynamical software, HSC Chemistry. A lattice strain-mediated mechanism has been proposed to explain the phase selective growth of 2D MoTe 2 , and different chemical kinetics-guided strategies have been developed to grow MoTe 2 flakes and films.  more » « less
Award ID(s):
2122044 1831133
NSF-PAR ID:
10324258
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
11
Issue:
61
ISSN:
2046-2069
Page Range / eLocation ID:
38839 to 38848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Among group VI transition metal dichalcogenides, MoTe 2 is predicted to have the smallest energy offset between semiconducting 2H and semimetallic 1T′ states. This makes it an attractive phase change material for both electronic and optoelectronic applications. Here, we report fast, nondestructive, and full phase change in Al 2 O 3 -encapsulated 2H-MoTe 2 thin films to 1T′-MoTe 2 using rapid thermal annealing at 900 °C. Phase change was confirmed using Raman spectroscopy after a short annealing duration of 10 s in both vacuum and nitrogen ambient. No thickness dependence of the transition temperatures was observed for flake thickness ranging from 1.5 to 8 nm. These results represent a major step forward in understanding the structural phase transition properties of MoTe 2 thin films using external heating and underline the importance of surface encapsulation for avoiding thin film degradation. 
    more » « less
  2. The fabrication of in‐plane 2H‐1T′ MoTe2homojunctions by the flux‐controlled, phase‐engineering of few‐layer MoTe2from Mo nanoislands is reported. The phase of few‐layer MoTe2is controlled by simply changing Te atomic flux controlled by the temperature of the reaction vessel. Few‐layer 2H MoTe2is formed with high Te flux, while few‐layer 1T′ MoTe2is obtained with low Te flux. With medium flux, few‐layer in‐plane 2H‐1T′ MoTe2homojunctions are synthesized. As‐synthesized MoTe2is characterized by Raman spectroscopy and X‐ray photoelectron spectroscopy. Kelvin probe force microscopy and Raman mapping confirm that in‐plane 2H‐1T′ MoTe2homojunctions have abrupt interfaces between 2H and 1T′ MoTe2domains, possessing a potential difference of about 100 mV. It is further shown that this method can be extended to create patterned metal–semiconductor junctions in MoTe2in a two‐step lithographic synthesis. The flux‐controlled phase engineering method could be utilized for the large‐scale controlled fabrication of 2D metal–semiconductor junctions for next‐generation electronic and optoelectronic devices.

     
    more » « less
  3. Abstract

    Piezoelectricity in low‐dimensional materials and metal–semiconductor junctions has attracted recent attention. Herein, a 2D in‐plane metal–semiconductor junction made of multilayer 2H and 1T′ phases of molybdenum(IV) telluride (MoTe2) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H–1T′ junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials.

     
    more » « less
  4. Abstract

    This work reports experimental demonstrations of reversible crystalline phase transition in ultrathin molybdenum ditelluride (MoTe2) controlled by thermal and mechanical mechanisms on the van der Waals (vdW) nanoelectromechanical systems (NEMS) platform, with hexagonal boron nitride encapsulated MoTe2structure residing on top of graphene layer. Benefiting from very efficient electrothermal heating and straining effects in the suspended vdW heterostructures, MoTe2phase transition is triggered by rising temperature and strain level. Raman spectroscopy monitors the MoTe2crystalline phase signatures in situ and clearly records reversible phase transitions between hexagonal 2H (semiconducting) and monoclinic 1T′ (metallic) phases. Combined with Raman thermometry, precisely measured nanomechanical resonances of the vdW devices enable the determination and monitoring of the strain variations as temperature is being regulated by electrothermal control. These results not only deepen the understanding of MoTe2phase transition, but also demonstrate a novel platform for engineering MoTe2phase transition and multiphysical devices.

     
    more » « less
  5. Abstract

    Li-ion batteries function by Li intercalating into and through the layered electrode materials. Intercalation is a solid-state interaction resulting in the formation of new phases. The new observations presented here reveal that at the nanoscale the intercalation mechanism is fundamentally different from the existing models and is actually driven by nonuniform phase distributions rather than the localized Li concentration: the lithiation process is a ‘distribution-dependent’ phenomena. Direct structure imaging of 2H and 1T dual-phase microstructures in lithiated MoS2and WS2along with the localized chemical segregation has been demonstrated in the current study. Li, a perennial challenge for the TEM, is detected and imaged using a low-dose, direct-electron detection camera on an aberration-corrected TEM and confirmed by image simulation. This study shows the presence of fully lithiated nanoscale domains of 2D host matrix in the vicinity of Li-lean regions. This confirms the nanoscale phase formation followed by Oswald ripening, where the less-stable smaller domains dissolves at the expense of the larger and more stable phases.

     
    more » « less