skip to main content


Title: Low‐Temperature‐Processed Printed Metal Oxide Transistors Based on Pure Aqueous Inks

Additive patterning of transparent conducting metal oxides at low temperatures is a critical step in realizing low‐cost transparent electronics for display technology and photovoltaics. In this work, inkjet‐printed metal oxide transistors based on pure aqueous chemistries are presented. These inks readily convert to functional thin films at lower processing temperatures (T≤ 250 °C) relative to organic solvent‐based oxide inks, facilitating the fabrication of high‐performance transistors with both inkjet‐printed transparent electrodes of aluminum‐doped cadmium oxide (ACO) and semiconductor (InOx). The intrinsic fluid properties of these water‐based solutions enable the printing of fine features with coffee‐ring free line profiles and smoother line edges than those formed from organic solvent‐based inks. The influence of low‐temperature annealing on the optical, electrical, and crystallographic properties of the ACO electrodes is investigated, as well as the role of aluminum doping in improving these properties. Finally, the all‐aqueous‐printed thin film transistors (TFTs) with inkjet‐patterned semiconductor (InOx) and source/drain (ACO) layers are characterized, which show ideal low contact resistance (Rc< 160 Ω cm) and competitive transistor performance (µlinup to 19 cm2V−1s−1, Subthreshold Slope (SS) ≤150 mV dec−1) with only low‐temperature processing (T≤ 250 °C).

 
more » « less
NSF-PAR ID:
10034574
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
27
Issue:
14
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Here, an environmentally‐friendly and scalable process is reported to synthesize reduced graphene oxide (RGO) thin films for printed electronics applications. The films are produced by inkjet printing GO flakes dispersed binder‐free in aqueous solutions followed by treatment with a nonthermal, radio‐frequency (RF) plasma containing only argon (Ar) gas. The plasma process is found to heat the substrate to temperatures no greater than 138 °C, enabling RGO to be printed directly on a wide range of temperature‐sensitive substrate materials including photo paper. Unlike other low‐temperature methods such as electrochemical reduction, plasma reduction is friendly to moisture absorbent materials. Moreover, the plasma treatment can be performed on nonconducting substrates, eliminating the need for film transfer. From an applications perspective, the printed, plasma‐reduced RGO exhibits excellent electrical, mechanical, and electrochemical properties. As a technology demonstrator, the working electrodes of hydrogen peroxide (H2O2) sensors fabricated from plasma‐reduced GO show a sensitivity of 277 ± 80 µA mm−1cm−2, which is comparable to RGO working electrodes made by electrochemical reduction.

     
    more » « less
  2. Printing enabled solution processing of semiconductors, especially Cu-based films, is an inexpensive and low-energy fabrication route for p-type thin-film transistors that are critical components of printed electronics. The state-of-the-art route is limited by a gap between ink compositions that are printable and ink compositions that enable high electrical performance at low processing temperatures. We overcome this gap based on the insight that the hole density of CuI can be tuned by alloying with CuBr while achieving a higher on/off ratio due to the lower formation energy of copper vacancies in CuBr than in CuI. We develop stable and printable precursor inks from binary metal halides that undergo post-printing recrystallization into a dense CuBrI thin film at temperatures as low as 60 °C. Adjusting the CuI/CuBr ratio affects the electrical properties. CuBr 0.2 I 0.8 films achieve the highest field-effect mobility among CuI based thin-film transistors (9.06 ± 1.94 cm 2 V −1 s −1 ) and an average on/off ratio of 10 2 –10 5 at a temperature of 150 °C. This performance is comparable to printed n-type Cu-based TFT that needs temperatures as high as 400 °C. (mobility = 0.22 cm 2 V −1 s −1 , on/off ratio = 10 3 ). The developed low-temperature processing capability is used to inkjet print textile-based CuBrI thin-film transistors at a low temperature of 60 °C to demonstrate the potential for printing complementary circuits in wearable electronic textiles. 
    more » « less
  3. Abstract

    The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs.

     
    more » « less
  4. Abstract

    New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.

     
    more » « less
  5. Metal oxide (MO) semiconductor thin films prepared from solution typically require multiple hours of thermal annealing to achieve optimal lattice densification, efficient charge transport, and stable device operation, presenting a major barrier to roll-to-roll manufacturing. Here, we report a highly efficient, cofuel-assisted scalable combustion blade-coating (CBC) process for MO film growth, which involves introducing both a fluorinated fuel and a preannealing step to remove deleterious organic contaminants and promote complete combustion. Ultrafast reaction and metal–oxygen–metal (M-O-M) lattice condensation then occur within 10–60 s at 200–350 °C for representative MO semiconductor [indium oxide (In2O3), indium-zinc oxide (IZO), indium-gallium-zinc oxide (IGZO)] and dielectric [aluminum oxide (Al2O3)] films. Thus, wafer-scale CBC fabrication of IGZO-Al2O3thin-film transistors (TFTs) (60-s annealing) with field-effect mobilities as high as ∼25 cm2V−1s−1and negligible threshold voltage deterioration in a demanding 4,000-s bias stress test are realized. Combined with polymer dielectrics, the CBC-derived IGZO TFTs on polyimide substrates exhibit high flexibility when bent to a 3-mm radius, with performance bending stability over 1,000 cycles.

     
    more » « less