skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: COORDINATED ANALYSIS OF TWO GRAPHITE GRAINS FROM THE CO3.0 LAP 031117 METEORITE: FIRST IDENTIFICATION OF A CO NOVA GRAPHITE AND A PRESOLAR IRON SULFIDE SUBGRAIN
Presolar grains constitute the remnants of stars that existed before the formation of the solar system. In addition to providing direct information on the materials from which the solar system formed, these grains provide ground-truth information for models of stellar evolution and nucleosynthesis. Here we report the in situ identification of two unique presolar graphite grains from the primitive meteorite LaPaz Icefield 031117. Based on these two graphite grains, we estimate a bulk presolar graphite abundance of {5}-3+7 ppm in this meteorite. One of the grains (LAP-141) is characterized by an enrichment in 12C and depletions in 33,34S, and contains a small iron sulfide subgrain, representing the first unambiguous identification of presolar iron sulfide. The other grain (LAP-149) is extremely 13C-rich and 15N-poor, with one of the lowest 12C/13C ratios observed among presolar grains. Comparison of its isotopic compositions with new stellar nucleosynthesis and dust condensation models indicates an origin in the ejecta of a low-mass CO nova. Grain LAP-149 is the first putative nova grain that quantitatively best matches nova model predictions, providing the first strong evidence for graphite condensation in nova ejecta. Our discovery confirms that CO nova graphite and presolar iron sulfide contributed to the original building blocks of the solar system.  more » « less
Award ID(s):
1517541
PAR ID:
10036395
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Astrophysical journal
Volume:
825
ISSN:
1538-4357
Page Range / eLocation ID:
id 88
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We report isotope data for C, N, Al, Si, and S of 33 presolar SiC and Si3N4 grains (0.3–1.6 $$\mu$$m) of Type X, C, D, and N from the Murchison CM2 meteorite of likely core-collapse supernova (CCSN) origin which we discuss together with data of six SiC X grains from an earlier study. The isotope data are discussed in the context of hydrogen ingestion supernova (SN) models. We have modified previously used ad-hoc mixing schemes in that we considered (i) heterogeneous H ingestion into the He shell of the pre-SN star, (ii) a variable C-N fractionation for the condensation of SiC grains in the SN ejecta, and (iii) smaller mass units for better fine-tuning. With our modified ad-hoc mixing approach over small scales (0.2–0.4 M⊙), with major contributions from the O-rich O/nova zone, we find remarkably good fits (within a few per cent) for 12C/13C, 26Al/27Al, and 29Si/28Si ratios. The 14N/15N ratio of SiC grains can be well matched if variable C-N fractionation is considered. However, the Si3N4 isotope data point to overproduction of 15N in hydrogen ingestion CCSN models and lower C-N fractionation during SiC condensation than applied here. Our ad-hoc mixing approach based on current CCSN models suggests that the O-rich O/nova zone, which uniquely combines explosive H- and He-burning signatures, is favourable for SiC and Si3N4 formation. The effective range of C/O abundance variations in the He shell triggered by H ingestion events in the massive star progenitor is currently not well constrained and needs further investigation. 
    more » « less
  2. Abstract From transmission electron microscopy and other laboratory studies of presolar grains, the implicit condensation sequence of carbon-bearing condensates in circumstellar envelopes of carbon stars is (from first to last) TiC-graphite-SiC. We use thermochemical equilibrium condensation calculations and show that the condensation sequence of titanium carbide (TiC), graphite (C(Gr)), and silicon carbide (SiC) depends on metallicity in addition to C/O ratio and total pressure. Calculations were performed for a characteristic carbon star ratio of C/O = 1.2 from 10−10to 10−4bars total pressure and for uniform metallicity variations ranging from 0.01 to 100 times solar elemental abundances. TiC always condenses at higher temperatures than SiC, and the carbide condensation temperatures increase with both increasing metallicity and increasing total pressure. Graphite, however, can condense in a cooling circumstellar envelope before TiC, between TiC and SiC, or after SiC, depending on the carbon-bearing gas chemistry, which is dependent on metallicity and total pressure. Analytical expressions for the graphite, TiC, and SiC condensation temperatures as functions of metallicity and total pressure are presented. The inferred sequence from laboratory presolar grain studies, TiC-graphite-SiC, is favored under equilibrium conditions at solar and subsolar metallicities between ∼10−5and 10−8bar total pressure within circumstellar envelopes of carbon stars with nominal C/O = 1.2. We also explored the dependence of the sequence at C/O ratios of 1.1 and 3.0, and found that as the C/O ratio increases, the TiC-graphite-SiC condensation sequence region occurs toward higher total pressures and lower metallicities. 
    more » « less
  3. Abstract Presolar graphite grains carry the isotopic signatures of their parent stars. A significant fraction of presolar graphites show isotopic abundance anomalies relative to solar for elements such as O, Si, Mg, and Ca, which are compatible with nucleosynthesis in core-collapse supernovae (CCSNe). Therefore, they must have condensed from CCSN ejecta before the formation of the Sun. Their most puzzling abundance signature is the22Ne-enriched component Ne-E(L), interpreted as the effect of the radioactive decay of22Na (T1/2= 2.6 yr). Previous works have shown that if H is ingested into the He shell and not fully destroyed before the explosion, the CCSN shock in the He-shell material produces large amounts of22Na. Here we focus on such CCSN models, showing a radioactive26Al production compatible with grain measurements, and analyze the conditions of22Na nucleosynthesis. In these models,22Na is mostly made in the He shell, with a total ejected mass varying between 2.6 × 10−3Mand 1.9 × 10−6M. We show that such22Na may already impact the CCSN light curve 500 days after the explosion, and at later stages it can be the main source powering the CCSN light curve for up to a few years before44Ti decay becomes dominant. Based on the CCSN yields above, the 1274.53 keVγ-ray flux due to22Na decay could be observable for years after the first CCSN light is detected, depending on the distance. This makes CCSNe possible sites to detect a22Naγ-ray signature consistently with the Ne-E(L) component found in presolar graphites. Finally, we discuss the potential contribution from22Na decay to the Galactic positron annihilation rate. 
    more » « less
  4. Abstract Presolar grains are stardust particles that condensed in the ejecta or in the outflows of dying stars and can today be extracted from meteorites. They recorded the nucleosynthetic fingerprint of their parent stars and thus serve as valuable probes of these astrophysical sites. The most common types of presolar silicon carbide grains (called mainstream SiC grains) condensed in the outflows of asymptotic giant branch stars. Their measured silicon isotopic abundances are not significantly influenced by nucleosynthesis within the parent star but rather represent the pristine stellar composition. Silicon isotopes can thus be used as a proxy for galactic chemical evolution (GCE). However, the measured correlation of29Si/28Si versus30Si/28Si does not agree with any current chemical evolution model. Here, we use a Monte Carlo model to vary nuclear reaction rates within their theoretical or experimental uncertainties and process them through stellar nucleosynthesis and GCE models to study the variation of silicon isotope abundances based on these nuclear reaction rate uncertainties. We find that these uncertainties can indeed be responsible for the discrepancy between measurements and models and that the slope of the silicon isotope correlation line measured in mainstream SiC grains agrees with chemical evolution models within the nuclear reaction rate uncertainties. Our result highlights the importance of future precision reaction rate measurements for resolving the apparent data–model discrepancy. 
    more » « less
  5. Amari, S (Ed.)
    Discussion of dust mineralogy and condensation temperatures of presolar grains forming in asymptotic giant branch (AGB) stars and in supernovae. Condensation temperatures as a function of total pressure and metallicity are listed for solar-like composition system. Reduced condensates at high C/O ratios are described. 
    more » « less