skip to main content


Title: Isotopic ratios for C, N, Si, Al, and Ti in C-rich presolar grains from massive stars
ABSTRACT Certain types of silicon carbide (SiC) grains, e.g. SiC-X grains, and low density (LD) graphites are C-rich presolar grains that are thought to have condensed in the ejecta of core-collapse supernovae (CCSNe). In this work, we compare C, N, Al, Si, and Ti isotopic abundances measured in presolar grains with the predictions of 21 CCSN models. The impact of a range of SN explosion energies is considered, with the high energy models favouring the formation of a C/Si zone enriched in 12C, 28Si, and 44Ti. Eighteen of the 21 models have H ingested into the He-shell and different abundances of H remaining from such H-ingestion. CCSN models with intermediate to low energy (that do not develop a C/Si zone) cannot reproduce the 28Si and 44Ti isotopic abundances in grains without assuming mixing with O-rich CCSN ejecta. The most 28Si-rich grains are reproduced by energetic models when material from the C/Si zone is mixed with surrounding C-rich material, and the observed trends of the 44Ti/48Ti and 49Ti/48Ti ratios are consistent with the C-rich C/Si zone. For the models with H-ingestion, high and intermediate explosion energies allow the production of enough 26Al to reproduce the 26Al/27Al measurements of most SiC-X and LD graphites. In both cases, the highest 26Al/27Al ratio is obtained with H still present at XH ≈ 0.0024 in He-shell material when the SN shock is passing. The existence of H in the former convective He-shell points to late H-ingestion events in the last days before massive stars explode as a supernova.  more » « less
Award ID(s):
1927130
NSF-PAR ID:
10464358
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
517
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1803 to 1820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report C, N, Mg-Al, Si, and S isotope data of six 1–3μm-sized SiC grains of Type X from the Murchison CM2 chondrite, believed to have formed in the ejecta of core-collapse supernova (CCSN) explosions. Their C, N, and Si isotopic compositions are fully compatible with previously studied X grains. Magnesium is essentially monoisotopic26Mg which gives clear evidence for the decay of radioactive26Al. Inferred initial26Al/27Al ratios are between 0.6 and 0.78 which is at the upper end of previously observed ratios of X grains. Contamination with terrestrial or solar system Al apparently is low or absent, which makes the X grains from this study particularly interesting and useful for a quantitative comparison of Al isotope data with predictions from supernova models. The consistently high26Al/27Al ratios observed here may suggest that the lower26Al/27Al ratios of many X grains from the literature are the result of significant Al contamination and in part also of an improper quantification of26Al. The real dispersion of26Al/27Al ratios in X grains needs to be explored by future studies. The high observed26Al/27Al ratios in this work provide a crucial constraint for the production of26Al in CCSN models. We explored different CCSN models, including both “classical” and H ingestion CCSN models. It is found that the classical models cannot account for the high26Al/27Al ratios observed here; in contrast, H ingestion models are able to reproduce the26Al/27Al ratios along with C, N, and Si isotopic ratios reasonably well.

     
    more » « less
  2. Abstract Isotope variations of nucleosynthetic origin among solar system solid samples are well documented, yet the origin of these variations is still uncertain. The observed variability of 54 Cr among materials formed in different regions of the protoplanetary disk has been attributed to variable amounts of presolar, chromium-rich oxide (chromite) grains, which exist within the meteoritic stardust inventory and most likely originated from some type of supernova explosion. To investigate if core-collapse supernovae (CCSNe) could be the site of origin of these grains, we analyze yields of CCSN models of stars with initial masses 15, 20, and 25 M ⊙ , and solar metallicity. We present an extensive abundance data set of the Cr, Mg, and Al isotopes as a function of enclosed mass. We find cases in which the explosive C ashes produce a composition in good agreement with the observed 54 Cr/ 52 Cr and 53 Cr/ 52 Cr ratios as well as the 50 Cr/ 52 Cr ratios. Taking into account that the signal at atomic mass 50 could also originate from 50 Ti, the ashes of explosive He burning also match the observed ratios. Addition of material from the He ashes (enriched in Al and Cr relative to Mg to simulate the make-up of chromite grains) to the solar system’s composition may reproduce the observed correlation between Mg and Cr anomalies, while material from the C ashes does not present significant Mg anomalies together with Cr isotopic variations. In all cases, nonradiogenic, stable Mg isotope variations dominate over the variations expected from 26 Al. 
    more » « less
  3. Abstract

    Our detailed mineralogical, elemental, and isotopic study of the Miller Range (MIL) 07687 meteorite showed that, although this meteorite has affinities to CO chondrites, it also exhibits sufficient differences to warrant classification as an ungrouped carbonaceous chondrite. The most notable feature of MIL 07687 is the presence of two distinct matrix lithologies that result from highly localized aqueous alteration. One of these lithologies is Fe‐rich and exhibits evidence for interaction with water, including the presence of fibrous (dendritic) ferrihydrite. The other lithology, which is Fe‐poor, appears to represent relatively unaltered protolith material. MIL 07687 has presolar grain abundances consistent with those observed in other modestly altered carbonaceous chondrites: the overall abundance of O‐rich presolar grains is 137 ± 3 ppm and the overall abundance of SiC grains is 71 ± 11 ppm. However, there is a large difference in the observed O‐rich and SiC grain number densities between altered and unaltered areas, reflecting partial destruction of presolar grains (both O‐ and C‐rich grains) due to the aqueous alteration experienced by MIL 07687 under highly oxidizing conditions. Detailed coordinated NanoSIMS‐TEM analysis of a large hotspot composed of an isotopically normal core surrounded by a rim composed of17O‐rich grains is consistent with either original condensation of the core and surrounding grains in the same parent AGB star, or with grain accretion in the ISM or solar nebula.

     
    more » « less
  4. Abstract

    SN 2018aoz is a Type Ia SN with aB-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hαand Heifavor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [Oi] and Heidisfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Feii] and [Niii]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission,BmaxVmaxcolor, and weak strength of nebular-phase [Caii]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.

     
    more » « less
  5. ABSTRACT

    We present a photometric and spectroscopic analysis of the ultraluminous and slowly evolving 03fg-like Type Ia SN 2021zny. Our observational campaign starts from ∼5.3 h after explosion (making SN 2021zny one of the earliest observed members of its class), with dense multiwavelength coverage from a variety of ground- and space-based telescopes, and is concluded with a nebular spectrum ∼10 months after peak brightness. SN 2021zny displayed several characteristics of its class, such as the peak brightness (MB = −19.95 mag), the slow decline (Δm15(B) = 0.62 mag), the blue early-time colours, the low ejecta velocities, and the presence of significant unburned material above the photosphere. However, a flux excess for the first ∼1.5 d after explosion is observed in four photometric bands, making SN 2021zny the third 03fg-like event with this distinct behaviour, while its +313 d spectrum shows prominent [O i] lines, a very unusual characteristic of thermonuclear SNe. The early flux excess can be explained as the outcome of the interaction of the ejecta with $\sim 0.04\, \mathrm{M_{\odot }}$ of H/He-poor circumstellar material at a distance of ∼1012 cm, while the low ionization state of the late-time spectrum reveals low abundances of stable iron-peak elements. All our observations are in accordance with a progenitor system of two carbon/oxygen white dwarfs that undergo a merger event, with the disrupted white dwarf ejecting carbon-rich circumstellar material prior to the primary white dwarf detonation.

     
    more » « less