skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origin of high hole concentrations in Mg-doped GaN films: Origin of high hole concentrations in Mg-doped GaN films
Award ID(s):
1710032
PAR ID:
10036510
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
physica status solidi (b)
Volume:
254
Issue:
8
ISSN:
0370-1972
Page Range / eLocation ID:
1600668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN. 
    more » « less
  2. null (Ed.)
  3. Teherani, Ferechteh H.; Look, David C.; Rogers, David J. (Ed.)
    Gallium oxide (Ga2O3), an ultra-wide bandgap semiconductor with potential applications in power devices, may be doped with Mg to control the native n-type conductivity. The charge transitions associated with Mg in Mg-doped β-Ga2O3 crystals are studied using photoinduced electron paramagnetic resonance (photo-EPR) spectroscopy to understand the mechanisms that produce stable semi-insulating substrates. The steady state photo-EPR measurements are performed at 130 K by illuminating the samples with photon energy from 0.7 to 4.7 eV. Our results show that there are two transitions associated with Mg in the bandgap: onset of quenching of neutral Mg at 1.5 eV and excitation at 3.0 eV. The quenching threshold is consistent with several DFT predicted values for Mg-/0 level. Therefore, we suggest the quenching is due to transition of an electron from the valence band to the neutral Mg. For photoexcitation, hole capture is the only viable process due to polaronic nature of neutral Mg in Ga2O3. The measurements demonstrate that electron excitation to impurities, such as Fe and Ir, does not contribute to creation of the holes. Further, gallium vacancies must not participate since their characteristic EPR spectrum is never seen. Thus, we speculate that the defects responsible for the hole formation and consequent excitation of the neutral Mg are oxygen vacancies. 
    more » « less