skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Handling Uncertainty in Geo-Spatial Data
An inherent challenge arising in any dataset containing information of space and/or time is uncertainty due to various sources of imprecision. Integrating the impact of the uncertainty is a paramount when estimating the reliability (confidence) of any query result from the underlying input data. To deal with uncertainty, solutions have been proposed independently in the geo-science and the data-science research community. This interdisciplinary tutorial bridges the gap between the two communities by providing a comprehensive overview of the different challenges involved in dealing with uncertain geo-spatial data, by surveying solutions from both research communities, and by identifying similarities, synergies and open research problems.  more » « less
Award ID(s):
1637541
PAR ID:
10036539
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
33rd IEEE International Conference on Data Engineering (ICDE)
Page Range / eLocation ID:
1467 to 1470
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale real-time analytics services continuously collect and analyze data from end-user applications and devices distributed around the globe. Such analytics requires data to be transferred over the wide-area network (WAN) to data centers (DCs) capable of processing the data. Since WAN bandwidth is expensive and scarce, it is beneficial to reduce WAN traffic by partially aggregating the data closer to end-users. We propose aggregation networks for performing aggregation on a geo-distributed edge-cloud infrastructure consisting of edge servers, transit and destination DCs. We identify a rich set of research questions aimed at reducing the traffic costs in an aggregation network. We present an optimization formulation for solving these questions in a principled manner, and use insights from the optimization solutions to propose an efficient, near-optimal practical heuristic. We implement the heuristic in AggNet, built on top of Apache Flink. We evaluate our approach using a geo-distributed deployment on Amazon EC2 as well as a WAN-emulated local testbed. Our evaluation using real-world traces from Twitter and Akamai shows that our approach is able to achieve 47% to 83% reduction in traffic cost over existing baselines without any compromise in timeliness. 
    more » « less
  2. null (Ed.)
    Large-scale real-time analytics services continuously collect and analyze data from end-user applications and devices distributed around the globe. Such analytics requires data to be transferred over the wide-area network (WAN) to data centers (DCs) capable of processing the data. Since WAN bandwidth is expensive and scarce, it is beneficial to reduce WAN traffic by partially aggregating the data closer to end-users. We propose aggregation networks for per- forming aggregation on a geo-distributed edge-cloud infrastructure consisting of edge servers, transit and destination DCs. We identify a rich set of research questions aimed at reducing the traffic costs in an aggregation network. We present an optimization formula- tion for solving these questions in a principled manner, and use insights from the optimization solutions to propose an efficient, near-optimal practical heuristic. We implement the heuristic in AggNet, built on top of Apache Flink. We evaluate our approach using a geo-distributed deployment on Amazon EC2 as well as a WAN-emulated local testbed. Our evaluation using real-world traces from Twitter and Akamai shows that our approach is able to achieve 47% to 83% reduction in traffic cost over existing baselines without any compromise in timeliness. 
    more » « less
  3. Adoption of data and compute-intensive research in geosciences is hindered by the same social and technological reasons as other science disciplines - we're humans after all. As a result, many of the new opportunities to advance science in today's rapidly evolving technology landscape are not approachable by domain geoscientists. Organizations must acknowledge and actively mitigate these intrinsic biases and knowledge gaps in their users and staff. Over the past ten years, CyVerse (www.cyverse.org) has carried out the mission "to design, deploy, and expand a national cyberinfrastructure for life sciences research, and to train scientists in its use." During this time, CyVerse has supported and enabled transdisciplinary collaborations across institutions and communities, overseen many successes, and encountered failures. Our lessons learned in user engagement, both social and technical, are germane to the problems facing the geoscience community today. A key element of overcoming social barriers is to set up an effective education, outreach, and training (EOT) team to drive initial adoption as well as continued use. A strong EOT group can reach new users, particularly those in under-represented communities, reduce power distance relationships, and mitigate users' uncertainty avoidance toward adopting new technology. Timely user support across the life of a project, based on mutual respect between the developers' and researchers' different skill sets, is critical to successful collaboration. Without support, users become frustrated and abandon research questions whose technical issues require solutions that are 'simple' from a developer's perspective, but are unknown by the scientist. At CyVerse, we have found there is no one solution that fits all research challenges. Our strategy has been to maintain a system of systems (SoS) where users can choose 'lego-blocks' to build a solution that matches their problem. This SoS ideology has allowed CyVerse users to extend and scale workflows without becoming entangled in problems which reduce productivity and slow scientific discovery. Likewise, CyVerse addresses the handling of data through its entire lifecycle, from creation to publication to future reuse, supporting community driven big data projects and individual researchers. 
    more » « less
  4. Severe geomagnetic storms can generate significant geo-electric fields that drive damaging quasi-direct currents within electric power grids. In "Space Weather Phase 1 Benchmarks," a report published in June 2018 by the Space Weather Operations, Research, and Mitigation (SWORM) Subcommittee on behalf of the National Science and Technology Council (NSTC), the "Induced Geo-electric Fields" working group (WG) summarized their objectives to: (1) assess the feasibility of establishing functional benchmarks for induced geo-electric fields using currently available storm data sets, existing models, and published literature; and (2) use the existing body of work to produce benchmarks for induced geo-electric fields for specific regions of the United States. To address this, they focused on developing a statistical product that captured maps of geo-electric hazard. Recently, our "next steps" WG reviewed these benchmarks to assess whether they are reasonable, aligned with the stated objectives, and up-to-date, based on new analyses as well as input from the community. We also considered whether the methodology used to derive them should be revised. In this presentation, we summarize the main findings of this WG, including recommendations for future data collection and/or studies that would improve their accuracy and usability, whilst at the same time, reducing the uncertainties associated with them. 
    more » « less
  5. Our ability to extract knowledge from evolving spatial phenomena and make it actionable is often impaired by unreliable, erroneous, obsolete, imprecise, sparse, and noisy data. Integrating the impact of this uncertainty is a paramount when estimating the reliability/confidence of any time-varying query result from the underlying input data. The goal of this advanced seminar is to survey solutions for managing, querying and mining uncertain spatial and spatio-temporal data. We survey different models and show examples of how to efficiently enrich query results with reliability information. We discuss both analytical solutions as well as approximate solutions based on geosimulation. 
    more » « less