skip to main content


Title: Anthropogenic CO 2 accumulation and uptake rates in the Pacific Ocean based on changes in the 13 C/ 12 C of dissolved inorganic carbon: Anthropgoenic 13 C Change Pacific Ocean
Award ID(s):
1543457
NSF-PAR ID:
10036918
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
31
Issue:
1
ISSN:
0886-6236
Page Range / eLocation ID:
59 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We determined the impact of anthropogenic CO2(Cant) accumulation on the δ13C of dissolved inorganic carbon in the Arctic Ocean (i.e., the13C Suess effect) based on δ13C measurements during a GEOTRACES cruise in 2015. The δ13C decrease was estimated from the amount of Cantchange derived by the transit time distribution approach and the ratio of the anthropogenic δ13C/dissolved inorganic carbon change (RC). A significant Cantincrease (up to 45 μmol kg−1) and δ13C decrease (up to −0.9‰) extends to ~2,000 m in the Canada and Makarov Basin. We find distinctly different RC values for the intermediate water (300–2,000 m) and upper halocline water (<200 m) of −0.020 and −0.012‰ (μmol kg−1)−1, respectively, which identifies two sources of Cantaccumulation from North Atlantic and North Pacific. Furthermore, estimated RC for intermediate waters is the same as the RC observed in the Greenland Sea and the rate of anthropogenic dissolved inorganic carbon increase estimated for intermediate waters at 0.9 μmol kg−1yr−1is identical to the estimated rate in the Iceland Sea. These observations indicate that the high rate of Cantaccumulation and δ13C decrease in the Arctic Ocean is primarily a result of the input of Cant, via ventilation of intermediate waters, from the Nordic Sea rather than local anthropogenic CO2uptake within the Arctic Basin. We determine the preindustrial δ13C (δ13CPI) distributions and find distinct δ13CPIsignatures of the intermediate and upper halocline waters that reflect the difference in δ13CPI–PO4relationship of Atlantic and Pacific source water.

     
    more » « less
  2. Abstract

    Rivers and streams play an important role within the global carbon cycle, in part through emissions of carbon dioxide (CO2) to the atmosphere. However, the sources of this CO2and their spatiotemporal variability are difficult to constrain. Recent work has highlighted the role of carbonate buffering reactions that may serve as a source of CO2in high alkalinity systems. In this study, we seek to develop a quantitative framework for the role of carbonate buffering in the fluxes and spatiotemporal patterns of CO2and the stable and radio‐ isotope composition of dissolved inorganic carbon (DIC). We incorporate DIC speciation calculations of carbon isotopologues into a stream network CO2model and perform a series of simulations, ranging from the degassing of a groundwater seep to a hydrologically‐coupled 5th‐order stream network. We find that carbonate buffering reactions contribute >60% of emissions in high‐alkalinity, moderate groundwater‐CO2environments. However, atmosphere equilibration timescales of CO2are minimally affected, which contradicts hypotheses that carbonate buffering maintains high CO2across Strahler orders in high alkalinity systems. In contrast, alkalinity dramatically increases isotope equilibration timescales, which acts to decouple CO2and DIC variations from the isotopic composition even under low alkalinity. This significantly complicates a common method for carbon source identification. Based on similar impacts on atmospheric equilibration for stable and radio‐ carbon isotopologues, we develop a quantitative method for partitioning groundwater and stream corridor carbon sources in carbonate‐dominated watersheds. Together, these results provide a framework to guide fieldwork and interpretations of stream network CO2patterns across variable alkalinities.

     
    more » « less