skip to main content


Title: A multiproxy record of terrestrial inputs to the coastal ocean using minor and trace elements (Ba/Ca, Mn/Ca, Y/Ca) and carbon isotopes ( δ 13 C, Δ 14 C) in a nearshore coral from Puerto Rico: PR CORAL ELEMENTAL AND C ISOTOPE RECORD
Award ID(s):
0610487
NSF-PAR ID:
10395891
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Paleoceanography
Volume:
27
Issue:
3
ISSN:
0883-8305
Page Range / eLocation ID:
n/a to n/a
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022). 
    more » « less
  2. Abstract. The nitrogen (N) isotope composition (δ15N) of cold-water corals is a promising proxy for reconstructing past ocean N cycling, as a strong correlation was found between the δ15N of the organic nitrogen preserved in coral skeletons and the δ15N of particulate organic matter exported from the surface ocean. However, a large offset of 8 ‰–9 ‰ between the δ15N recorded by the coral and that of exported particulate organic matter remains unexplained. The 8 ‰–9 ‰ offset may signal a higher trophic level of coral dietary sources, an unusually large trophic isotope effect or a biosynthetic δ15N offset between the coral's soft tissue and skeletal organic matter, or some combinations of these factors. To understand the origin of the offset and further validate the proxy, we investigated the trophic ecology of the asymbiotic scleractinian cold-water coral Balanophyllia elegans, both in a laboratory setting and in its natural habitat. A long-term incubation experiment of B. elegans fed on an isotopically controlled diet yielded a canonical trophic isotope effect of 3.0 ± 0.1 ‰ between coral soft tissue and the Artemia prey. The trophic isotope effect was not detectably influenced by sustained food limitation. A long N turnover of coral soft tissue, expressed as an e-folding time, of 291 ± 15 d in the well-fed incubations indicates that coral skeleton δ15N is not likely to track subannual (e.g., seasonal) variability in diet δ15N. Specimens of B. elegans from the subtidal zone near San Juan Channel (WA, USA) revealed a modest difference of 1.2 ± 0.6 ‰ between soft tissue and skeletal δ15N. The δ15N of the coral soft tissue was 12.0 ± 0.6 ‰, which was ∼6 ‰ higher than that of suspended organic material that was comprised dominantly of phytoplankton – suggesting that phytoplankton is not the primary component of B. elegans' diet. An analysis of size-fractionated net tow material suggests that B. elegans fed predominantly on a size class of zooplankton ≥500 µm, implicating a two-level trophic transfer between phytoplankton material and coral tissue. These results point to a feeding strategy that may result in an influence of the regional food web structure on the cold-water coral δ15N. This factor should be taken into consideration when applying the proxy to paleo-oceanographic studies of ocean N cycling.

     
    more » « less
  3. Abstract. The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of low benthic foraminiferal abundances, challenges with constructing independent sediment core age models, and an apparent muted amplitude of Arctic δ18Ob variability compared to open-ocean records. Here we evaluate the controls on Arctic δ18Ob by using ostracode Mg/Ca paleothermometry to generate a composite record of the δ18O of seawater (δ18Osw) from 12 sediment cores in the intermediate to deep Arctic Ocean (700–2700 m) that covers the last 600 kyr based on biostratigraphy and orbitally tuned age models. Results show that Arctic δ18Ob was generally higher than open-ocean δ18Ob during interglacials but was generally equivalent to global reference records during glacial periods. The reduced glacial–interglacial Arctic δ18Ob range resulted in part from the opposing effect of temperature, with intermediate to deep Arctic warming during glacials counteracting the whole-ocean δ18Osw increase from expanded terrestrial ice sheets. After removing the temperature effect from δ18Ob, we find that the intermediate to deep Arctic experienced large (≥1 ‰) variations in local δ18Osw, with generally higher local δ18Osw during interglacials and lower δ18Osw during glacials. Both the magnitude and timing of low local δ18Osw intervals are inconsistent with the recent proposal of freshwater intervals in the Arctic Ocean during past glaciations. Instead, we suggest that lower local δ18Osw in the intermediate to deep Arctic Ocean during glaciations reflected weaker upper-ocean stratification and more efficient transport of low-δ18Osw Arctic surface waters to depth by mixing and/or brine rejection. 
    more » « less