skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioaccumulation of methylmercury in a marine copepod
Abstract Methylmercury (MeHg) is known to biomagnify in marine food chains, resulting in higher concentrations in upper trophic level animals than their prey. To better understand how marine copepods, an important intermediate between phytoplankton and forage fish at the bottom of the food chain, assimilate and release MeHg, the authors performed a series of laboratory experiments using the gamma‐emitting radiotracer203Hg2+and Me203Hg with the calanoid copepodAcartia tonsa. Assimilation efficiencies of Hg2+and MeHg ranged from 25% to 31% and 58% to 79%, respectively, depending on algal diets. Assimilation efficiencies were positively related to the fraction of Hg in the cytoplasm of the algal cells that comprised their diet. Efflux rates of Hg2+(0.29/d) and MeHg (0.21/d) following aqueous uptake were similar, but efflux rates following dietary uptake were significantly lower for MeHg (0.11–0.22/d) than Hg2+(0.47–0.66/d). The calculated trophic transfer factors in copepods were >1 for MeHg and consistently low (≤0.2) for Hg2+. The authors used the parameters measured to quantitatively model the relative importance of MeHg sources (water or diet) for copepods and to predict the overall MeHg concentrations in copepods in different marine environments. In general, MeHg uptake from the diet accounted for most of the body burden in copepods (>50%). For an algal diet with a MeHg dry weight bioconcentration factor ≥106, >90% of a copepod's MeHg body burden can be shown to derive from the diet. The model‐predicted MeHg concentrations in the copepods were comparable to independent measurements for copepods in coastal and open‐ocean regions, implying that the measured parameters and model are applicable to natural waters.Environ Toxicol Chem2017;36:1287–1293. © 2016 SETAC  more » « less
Award ID(s):
1634024
PAR ID:
10036995
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Environmental Toxicology and Chemistry
Volume:
36
Issue:
5
ISSN:
0730-7268
Format(s):
Medium: X Size: p. 1287-1293
Size(s):
p. 1287-1293
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Elemental mercury (Hg0) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0in seawater remains unquantified. A rapid radioassay method was developed using gamma‐emitting203Hg as a tracer to evaluate Hg0production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg0, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg0in 4 d in Atlantic surface seawater containing low‐bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg0. Decreasing temperatures from 24°C to 4°C reduced Hg0production rates cell−1from Hg(II) 3.3 times as much as from a MeHg source. Because Hg0production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg0formation in subsurface waters where light penetration is diminished. 
    more » « less
  2. Methylmercury (MeHg) is a neurotoxin that bioaccumulates to potentially harmful concentrations in Arctic and Subarctic marine predators and those that consume them. Monitoring and modeling MeHg bioaccumulation and biogeochemical cycling in the ocean requires an understanding of the mechanisms behind net mercury (Hg) methylation. The key functional gene pair for Hg methylation,hgcAB, is widely distributed throughout ocean basins and spans multiple microbial phyla. While multiple microbially mediated anaerobic pathways for Hg methylation in the ocean are known, the majority ofhgcAhomologs have been found in oxic subsurface waters, in contrast to other ecosystems. In particular, microaerophilicNitrospina, a genera of nitrite-oxidizing bacteria containing ahgcA-like sequence, have been proposed as a potentially important Hg methylator in the upper ocean. The objective of this work was therefore to examine the potential of nitrifiers as Hg methylators and quantify total Hg and MeHg across three Arctic and Subarctic seas (the Gulf of Alaska, the Bering Sea and the Chukchi Sea) in regions whereNitrospinaare likely present. In Spring 2021, samples for Hg analysis were obtained with a trace metal clean rosette across these seas. Mercury methylation rates were quantified in concert with nitrification rates using onboard incubation experiments with additions of stable isotope-labeled Hg and NH4+. A significant correlation between Hg methylation and nitrification was observed across all sites (R2= 0.34,p< 0.05), with the strongest correlation in the Chukchi Sea (R2= 0.99,p< 0.001).Nitrospina-specifichgcA-like genes were detected at all sites. This study, linking Hg methylation and nitrification in oxic seawater, furthers understanding of MeHg cycling in these high latitude waters, and the ocean in general. Furthermore, these studies inform predictions of how climate and human interactions could influence MeHg concentrations across the Arctic in the future. 
    more » « less
  3. Monitoring the impacts of global efforts to reduce mercury (Hg) emissions is limited by the collection of biological samples at appropriate spatiotemporal scales. This is especially true in the deep sea, a vast region with food webs that cycle bioaccumulative methylmercury (MeHg). Within a species, understanding the distribution of Hg across tissue types can reveal how Hg accumulates in the body and inform how useful a species is for biomonitoring geographic regions or vertical habitats of the ocean. We focus on a globally distributed deep-sea fish, the longnose lancetfish (Alepisaurus ferox, n = 69 individuals), and measure total mercury (THg) and MeHg concentrations in 10 tissue types (brain, caudal white muscle, dorsal white muscle, gallbladder, gill filament, gonad, heart, intestine, liver, and stomach lining). Across all tissue types, THg and MeHg concentrations were higher in large lancetfish (≥1.8 kg) than small lancetfish (<1.8 kg), but concentrations were relatively stable within size classes. THg levels were highest in liver, intestine, and heart, followed by caudal white muscle, dorsal white muscle, stomach lining, and gill filament, then by gonad and gallbladder. We describe how ontogenetic diet shifts explain Hg bioaccumulation in pelagic predators inhabiting similar waters to lancetfish. We hypothesize that diet shifts to deeper-dwelling prey and fishes drive increases in THg and MeHg concentrations in large lancetfish. We propose lancetfish as a strong candidate for monitoring spatiotemporal variability of Hg in the deep pelagic – they are commonly captured in global fisheries and may reflect Hg sources in two distinct vertical habitats of the ocean. 
    more » « less
  4. We examined mercury (Hg) accumulation in juvenile and adult subpopulations of Antarctic krill (Euphausia superba) collected west of the Antarctic Peninsula. Samples were collected along a northern cross-shelf transect beginning near Anvers Island and farther south near the sea ice edge in the austral summers of 2011, 2013, 2014, and 2015. Regardless of geographical position, mean concentrations of total Hg and methylmercury (MeHg), the form of Hg that biomagnifies in marine food webs, were significantly higher in juvenile than adult krill in all years. In 2013, juvenile Antarctic krill collected along the coast near Anvers Island had significantly higher MeHg concentrations than krill collected farther offshore, and in 2013 and 2014, coastal juvenile krill exhibited some of the highest MeHg concentrations of all subpopulations sampled. Across all sampling years, collection in northern (sea ice-free) or southern (sea ice edge) transects did not affect MeHg concentrations of juvenile or adult krill, suggesting similar levels and routes of MeHg exposure across the latitudes sampled. Developmental stage, feeding near the coast, and annual variations in sea ice-driven primary and export production were identified as potentially important factors leading to greater MeHg accumulation in juvenile than adult krill. Krill-dependent predators feeding primarily on juveniles may thus accumulate more MeHg than consumers foraging on older krill. These results report MeHg concentrations in Antarctic krill and will be useful for predicting Hg biomagnification in higher-level consumers in this productive Antarctic ecosystem. 
    more » « less
  5. Abstract Mercury (Hg) is a bioaccumulative neurotoxin that can concentrate to potentially harmful levels in higher levels of marine food webs following conversion to methylmercury (MeHg). This is of public health concern as seafood is a main protein source for many in the Pacific region. To better understand Hg partitioning and transformations in the Pacific Ocean, Hg species and phases were measured along a meridional section from Alaska to Tahiti in 2018. This allowed the description of Hg concentrations and speciation under a variety of biogeochemical conditions such as the Alaskan shelf, the oligotrophic North Pacific gyre, and near the hydrothermally active Loihi seamount. Filtered HgT concentrations were elevated below 1,000 m near the Loihi Seamount with an average concentration of 1.45 pM, possibly indicating enrichment from hydrothermal venting. Filtered MeHg concentrations were notably higher at depth at the equator and generally lower south of the equator. Total Hg in suspended particles was greatest in the upper 1,000 m near the Alaskan Shelf and decreased in concentration southward. Suspended particle MeHg was greatest in the surface ocean in the upper 300 m near the Intertropical Convergence Zone (ITCZ). For both HgT and MeHg, particle‐associated concentrations appear to be related to organic fraction, and concentrations decreased southward. In general, all measured Hg species had greater concentrations in the northern than southern Pacific Ocean consistent with prior measurements. 
    more » « less