skip to main content


This content will become publicly available on May 25, 2024

Title: Linked mercury methylation and nitrification across oxic subpolar regions

Methylmercury (MeHg) is a neurotoxin that bioaccumulates to potentially harmful concentrations in Arctic and Subarctic marine predators and those that consume them. Monitoring and modeling MeHg bioaccumulation and biogeochemical cycling in the ocean requires an understanding of the mechanisms behind net mercury (Hg) methylation. The key functional gene pair for Hg methylation,hgcAB, is widely distributed throughout ocean basins and spans multiple microbial phyla. While multiple microbially mediated anaerobic pathways for Hg methylation in the ocean are known, the majority ofhgcAhomologs have been found in oxic subsurface waters, in contrast to other ecosystems. In particular, microaerophilicNitrospina, a genera of nitrite-oxidizing bacteria containing ahgcA-like sequence, have been proposed as a potentially important Hg methylator in the upper ocean. The objective of this work was therefore to examine the potential of nitrifiers as Hg methylators and quantify total Hg and MeHg across three Arctic and Subarctic seas (the Gulf of Alaska, the Bering Sea and the Chukchi Sea) in regions whereNitrospinaare likely present. In Spring 2021, samples for Hg analysis were obtained with a trace metal clean rosette across these seas. Mercury methylation rates were quantified in concert with nitrification rates using onboard incubation experiments with additions of stable isotope-labeled Hg and NH4+. A significant correlation between Hg methylation and nitrification was observed across all sites (R2= 0.34,p< 0.05), with the strongest correlation in the Chukchi Sea (R2= 0.99,p< 0.001).Nitrospina-specifichgcA-like genes were detected at all sites. This study, linking Hg methylation and nitrification in oxic seawater, furthers understanding of MeHg cycling in these high latitude waters, and the ocean in general. Furthermore, these studies inform predictions of how climate and human interactions could influence MeHg concentrations across the Arctic in the future.

 
more » « less
Award ID(s):
1656070 1854454
NSF-PAR ID:
10468068
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Environmental Chemistry
Volume:
4
ISSN:
2673-4486
Page Range / eLocation ID:
1109537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mercury (Hg) concentrations and speciation within surface waters of the Arctic Ocean are controlled by a complex set of processes including photochemical and microbial transformations, redox reactions, and air-sea exchange of gaseous and particulate Hg species. In this study, our aim was to estimate the magnitude of volatile Hg fluxes across the air-sea interface, and examine the influence of ice cover on this process. While gas exchange in the open ocean has been modeled as a function of wind speed, the parameterization is problematic in the presence of sea ice, which can physically block gas exchange, as well as reduce fetch and dampen waves. By using measurements of Radon-222 (Rn-222) gas and it parent isotope, Radium-226 (Ra-226), to accurately measure gas exchange velocities (k), the relative impacts of chemical and biological processes on mercury distributions within the surface waters can then be deduced. This dataset contains Radon-222 and Radium-226 activity concentrations from R/V Sikuliaq cruise SKQ202108S in the Bering Sea, through the Bering Strait, and in shelf waters of the Chukchi Sea during May – June 2021. Samples include seawater (16 water column profiles), as well as ice cores and brine from four ice stations. At the time of the cruise, sampling locations in the Bering Sea were ice free and gas transfer velocities (k) estimated from Rn-222 deficits (with respect to Ra-226 concentrations) were in general agreement with published parameterizations of k as a function of wind speed. The springtime retreating ice edge was located at 69-70 degrees north latitude in the Chukchi Sea, and sampling locations there were located along the ice edge, in areas of open water, and at sites within the pack ice up to ~10 kilometers (km) from the ice edge. Gas transfer velocities in the marginal ice zone also reflected recent wind histories, with k values generally at the high end of or exceeding those predicted from the wind speed parameterizations. 
    more » « less
  2. Abstract

    Humans are exposed to potentially harmful amounts of the neurotoxin monomethylmercury (MMHg) through consumption of marine fish and mammals. However, the pathways of MMHg production and bioaccumulation in the ocean remain elusive. In anaerobic environments, inorganic mercury (Hg) can be methylated to MMHg through an enzymatic pathway involving thehgcABgene cluster. Recently,hgcA‐like genes have been discovered in oxygenated marine water, suggesting thehgcABmethylation pathway, or a close analog, may also be relevant in the ocean. Using polymerase chain reaction amplification and shotgun metagenomics, we searched for but did not find thehgcABgene cluster in Arctic Ocean seawater. However, we detected Hg‐cycling genes from themeroperon (including organomercury lyase,merB), andhgcA‐like paralogs (i.e.,cdhD) in Arctic Ocean metagenomes. Our analysis of Hg biogeochemistry and marine microbial genomics suggests that various microorganisms and metabolisms, and not just thehgcABpathway, are important for Hg methylation in the ocean.

     
    more » « less
  3. Abstract

    Methylmercury (MeHg) production is controlled by the bioavailability of inorganic divalent mercury (Hg(II)i) and Hg‐methylation capacity of the microbial community (conferred by thehgcABgene cluster). However, the relative importance of these factors and their interaction in the environment remain poorly understood. Here, metagenomic sequencing and a full‐factorial MeHg formation experiment were conducted across a wetland sulfate gradient with different microbial communities and pore water chemistries. From this experiment, the relative importance of each factor on MeHg formation was isolated. Hg(II)ibioavailability correlated with the dissolved organic matter composition, while the microbial Hg‐methylation capacity correlated with the abundance ofhgcAgenes. MeHg formation responded synergistically to both factors. Notably,hgcAsequences were from diverse taxonomic groups, none of which contained genes for dissimilatory sulfate reduction. This work expands our understanding of the geochemical and microbial constraints on MeHg formation in situ and provides an experimental framework for further mechanistic studies.

     
    more » « less
  4. Abstract

    The biogeochemical cycling of nitrogen (N) plays a critical role in supporting marine ecosystems and controlling primary production. Nitrification, the oxidation of ammonia (NH3) by microorganisms, is an important process in the marine N cycle, supplying nitrate (), the primary source of N that fuels new phytoplankton growth, and the primary substrate for the microbial process of denitrification. Understanding nitrification in the Chukchi Sea, the shallow sea overlying the continental shelf north of Alaska and the Bering Strait, is particularly important as phytoplankton growth there has been shown to be limited by N. However, the controls on nitrification in the water column and potential effects of climate change remain unknown. This study seeks to characterize the controls on nitrification in the Chukchi Sea. We found light to be a strong control on nitrification rates. Nitrification was undetectable at light levels above 23 μmol photons m−2 s−1. Subsequently, sea ice concentration was related to nitrification, with rates being higher at stations with high ice cover where light transmission to the water column was reduced. High ammonium () concentrations also enhanced nitrification, suggesting that nitrifying organisms were substrate‐limited, likely due to competition for from phytoplankton. Unlike previous experimental studies, we found that nitrification rates were higher under low pH conditions. As the effects of ocean acidification and warming disproportionately impact the Arctic, nitrification rates will undoubtedly be affected. Our results will help guide future studies on potential implications of climate change on the biogeochemistry of N in the Chukchi Sea.

     
    more » « less
  5. Abstract

    Monomethylmercury (CH3Hg) is the only form of mercury (Hg) known to biomagnify in food webs. Here we investigate factors driving methylated mercury [MeHg = CH3Hg + (CH3)2Hg)] production and degradation across the global ocean and uptake and trophic transfer at the base of marine food webs. We develop a new global 3‐D simulation of MeHg in seawater and phyto/zooplankton within the Massachusetts Institute of Technology general circulation model. We find that high modeled MeHg concentrations in polar regions are driven by reduced demethylation due to lower solar radiation and colder temperatures. In the eastern tropical subsurface waters of the Atlantic and Pacific Oceans, the model results suggest that high MeHg concentrations are associated with enhanced microbial activity and atmospheric inputs of inorganic Hg. Global budget analysis indicates that upward advection/diffusion from subsurface ocean provides 17% of MeHg in the surface ocean. Modeled open ocean phytoplankton concentrations are relatively uniform because lowest modeled seawater MeHg concentrations occur in oligotrophic regions with the smallest size classes of phytoplankton, with relatively high uptake of MeHg and vice versa. Diatoms and synechococcus are the two most important phytoplankton categories for transferring MeHg from seawater to herbivorous zooplankton, contributing 35% and 25%, respectively. Modeled ratios of MeHg concentrations between herbivorous zooplankton and phytoplankton are 0.74–0.78 for picoplankton (i.e., no biomagnification) and 2.6–4.5 for eukaryotic phytoplankton. The spatial distribution of the trophic magnification factor is largely determined by the zooplankton concentrations. Changing ocean biogeochemistry resulting from climate change is expected to have a significant impact on marine MeHg formation and bioaccumulation.

     
    more » « less