skip to main content


Title: Theory and implementation of dynamic watermarking for cybersecurity of advanced transportation systems
We consider a prototypical intelligent transportation system with a control law that is specifically designed to avoid collisions. We experimentally demonstrate that, nevertheless, an attack on a position sensor can result in collisions between vehicles. This is a consequence of the feeding of malicious sensor measurements to the controller and the collision avoidance module built into the system. This is an instance of the broader concern of cybersecurity vulnerabilities opened up by the increasing integration of critical physical infrastructures with the cyber system. We consider a solution based on “dynamic watermarking” of signals to detect and stop such attacks on cyber-physical systems. We show how dynamic watermarking can handle nonlinearities arising in vehicular models. We then experimentally demonstrate that employing this nonlinear extension indeed restores the property of collision freedom even in the presence of attacks.  more » « less
Award ID(s):
1646449
NSF-PAR ID:
10037670
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2016 IEEE Conference on Communications and Network Security (CNS)
Page Range / eLocation ID:
416-420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We address the problem of security of cyber-physical systems where some sensors may be malicious. We consider a multiple-input, multiple-output stochastic linear dynamical system controlled over a network of communication and computational nodes which contains (i) a controller that computes the inputs to be applied to the physical plant, (ii) actuators that apply these inputs to the plant, and (iii) sensors which measure the outputs of the plant. Some of these sensors, however, may be malicious. The malicious sensors do not report the true measurements to the controller. Rather, they report false measurements that they fabricate, possibly strategically, so as to achieve any objective that they may have, such as destabilizing the closed-loop system or increasing its running cost. Recently, it was shown that under certain conditions, an approach of “dynamic watermarking” can secure such a stochastic linear dynamical system in the sense that either the presence of malicious sensors in the system is detected, or the malicious sensors are constrained to adding a distortion that can only be of zero power to the noise already entering the system. The first contribution of this paper is to generalize this result to partially observed MIMO systems with both process and observation noises, a model which encompasses some of the previous models for which dynamic watermarking was established to guarantee security. This result, similar to the prior ones, is shown to hold when the controller subjects the reported sequence of measurements to two particular tests of veracity. The second contribution of this paper is in showing, via counterexamples, that both of these tests are needed in order to secure the control system in the sense that if any one of these two tests of sensor veracity is dropped, then the above guarantee does not hold. The proposed approach has several potential applications, including in smart grids, automated transportation, and process control. 
    more » « less
  2. The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied to a process by bypassing the control law to cause the actuators to apply undesirable control actions. Despite these differences, this manuscript shows that we can extend and combine strategies for handling sensor cyberattacks from our prior work to handle attacks on actuators and to handle cases where sensor and actuator attacks occur at the same time. These strategies for cyberattack-handling and detection are based on the Lyapunov-based economic model predictive control (LEMPC) and nonlinear systems theory. We first review our prior work on sensor measurement cyberattacks, providing several new insights regarding the methods. We then discuss how those methods can be extended to handle attacks on actuator signals and then how the strategies for handling sensor and actuator attacks individually can be combined to produce a strategy that is able to guarantee safety when attacks are not detected, even if both types of attacks are occurring at once. We also demonstrate that the other combinations of the sensor and actuator attack-handling strategies cannot achieve this same effect. Subsequently, we provide a mathematical characterization of the “discoverability” of cyberattacks that enables us to consider the various strategies for cyberattack detection presented in a more general context. We conclude by presenting a reactor example that showcases the aspects of designing LEMPC. 
    more » « less
  3. Abstract

    Detection of deception attacks is pivotal to ensure the safe and reliable operation of cyber-physical systems (CPS). Detection of such attacks needs to consider time-series sequences and is very challenging especially for autonomous vehicles that rely on high-dimensional observations from camera sensors. The paper presents an approach to detect deception attacks in real-time utilizing sensor observations, with a special focus on high-dimensional observations. The approach is based on inductive conformal anomaly detection (ICAD) and utilizes a novel generative model which consists of a variational autoencoder (VAE) and a recurrent neural network (RNN) that is used to learn both spatial and temporal features of the normal dynamic behavior of the system. The model can be used to predict the observations for multiple time steps, and the predictions are then compared with actual observations to efficiently quantify the nonconformity of a sequence under attack relative to the expected normal behavior, thereby enabling real-time detection of attacks using high-dimensional sequential data. We evaluate the approach empirically using two simulation case studies of an advanced emergency braking system and an autonomous car racing example, as well as a real-world secure water treatment dataset. The experiments show that the proposed method outperforms other detection methods, and in most experiments, both false positive and false negative rates are less than 10%. Furthermore, execution times measured on both powerful cloud machines and embedded devices are relatively short, thereby enabling real-time detection.

     
    more » « less
  4. Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network. 
    more » « less
  5. While many research efforts on Cyber-Physical System (CPS) security are devoted to attack detection, how to respond to the detected attacks receives little attention. Attack response is essential since serious consequences can be caused if CPS continues to act on the compromised data by the attacks. In this work, we aim at the response to sensor attacks and adapt machine learning techniques to recover CPSs from such attacks. There are, however, several major challenges. i) Cumulative error. Recovery needs to estimate the current state of a physical system (e.g., the speed of a vehicle) in order to know if the system has been driven to a certain state. However, the estimation error accumulates over time in presence of compromised sensors. ii) Timely response. A fast response is needed since slow recovery not only comes with large estimation errors but also may be too late to avoid irreparable consequences. To address these challenges, we propose a novel learning-based solution, named sequence-predictive recovery (or SeqRec). To reduce the estimation error, SeqRec designs the first sequence-to-sequence (Seq2Seq) model to uncover the temporal and spatial dependencies among sensors and control demands, and then uses the model to estimate system states using the trustworthy data logged in history. To achieve an adequate and fast recovery, SeqRec designs the second Seq2Seq model that considers both the current time step using the remaining intact sensors and the future time steps based on a given target state, and embeds the model into a novel recovery control algorithm to drive a physical system back to that state. Experimental results demonstrate that SeqRec can effectively and efficiently recover CPSs from sensor attacks. 
    more » « less