Abstract ObjectivesWe apply new statistical models to daily diary data to advance both methodological and conceptual goals. We examine age effects in within-person slopes in daily diary data and introduce Generalized Fiducial Inference (GFI), which provides a compromise between frequentist and Bayesian inference. We use daily stressor exposure data across six domains to generate within-person emotional reactivity slopes with daily negative affect. We test for systematic age differences and similarities in these reactivity slopes, which are inconsistent in previous research. MethodOne hundred and eleven older (aged 60–90) and 108 younger (aged 18–36) adults responded to daily stressor and negative affect questions each day for eight consecutive days, resulting in 1,438 total days. Daily stressor domains included arguments, avoided arguments, work/volunteer stressors, home stressors, network stressors, and health-related stressors. ResultsUsing Bayesian, GFI, and frequentist paradigms, we compared results for the six stressor domains with a focus on interpreting age effects in within-person reactivity. Multilevel models suggested null age effects in emotional reactivity across each of the paradigms within the domains of avoided arguments, work/volunteer stressors, home stressors, and health-related stressors. However, the models diverged with respect to null age effects in emotional reactivity to arguments and network stressors. DiscussionThe three paradigms converged on null age effects in reactivity for four of the six stressor domains. GFI is a useful tool that provides additional information when making determinations regarding null age effects in within-person slopes. We provide the code for readers to apply these models to their own data.
more »
« less
Generalized fiducial inference for logistic graded response models
Samejima’s graded response model (GRM) has gained popularity in the analyses of ordinal response data in psychological, educational, and health-related assessment.Obtaining high-quality point and interval estimates for GRM parameters attracts a great deal of attention in the literature. In the current work, we derive generalized fiducial inference (GFI) for a family of multidimensional graded response model, implement a Gibbs sampler to perform fiducial estimation, and compare its finite-sample performance with several commonly used likelihood-based and Bayesian approaches via three simulation studies. It is found that the proposed method is able to yield reliable inference even in the presence of small sample size and extreme generating parameter values, outperforming the other candidate methods under investigation. The use of GFI as a convenient tool to quantify sampling variability in various inferential procedures is illustrated by an empirical data analysis using the patient-reported emotional distress data.
more »
« less
- Award ID(s):
- 1633074
- PAR ID:
- 10037771
- Date Published:
- Journal Name:
- Psychometrika
- ISSN:
- 1860-0980
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Since the introduction of fiducial inference by Fisher in the 1930s, its application has been largely confined to relatively simple, parametric problems. In this paper, we present what might be the first time fiducial inference is systematically applied to estimation of a nonparametric survival function under right censoring. We find that the resulting fiducial distribution gives rise to surprisingly good statistical procedures applicable to both one-sample and two-sample problems. In particular, we use the fiducial distribution of a survival function to construct pointwise and curvewise confidence intervals for the survival function, and propose tests based on the curvewise confidence interval. We establish a functional Bernstein–von Mises theorem, and perform thorough simulation studies in scenarios with different levels of censoring. The proposed fiducial-based confidence intervals maintain coverage in situations where asymptotic methods often have substantial coverage problems. Furthermore, the average length of the proposed confidence intervals is often shorter than the length of confidence intervals for competing methods that maintain coverage. Finally, the proposed fiducial test is more powerful than various types of log-rank tests and sup log-rank tests in some scenarios. We illustrate the proposed fiducial test by comparing chemotherapy against chemotherapy combined with radiotherapy, using data from the treatment of locally unresectable gastric cancer.more » « less
-
Abstract While fiducial inference was widely considered a big blunder by R.A. Fisher, the goal he initially set—‘inferring the uncertainty of model parameters on the basis of observations’—has been continually pursued by many statisticians. To this end, we develop a new statistical inference method called extended Fiducial inference (EFI). The new method achieves the goal of fiducial inference by leveraging advanced statistical computing techniques while remaining scalable for big data. Extended Fiducial inference involves jointly imputing random errors realized in observations using stochastic gradient Markov chain Monte Carlo and estimating the inverse function using a sparse deep neural network (DNN). The consistency of the sparse DNN estimator ensures that the uncertainty embedded in observations is properly propagated to model parameters through the estimated inverse function, thereby validating downstream statistical inference. Compared to frequentist and Bayesian methods, EFI offers significant advantages in parameter estimation and hypothesis testing. Specifically, EFI provides higher fidelity in parameter estimation, especially when outliers are present in the observations; and eliminates the need for theoretical reference distributions in hypothesis testing, thereby automating the statistical inference process. Extended Fiducial inference also provides an innovative framework for semisupervised learning.more » « less
-
Since the mid‐2000s, there has been a resurrection of interest in modern modifications of fiducial inference. To date, the main computational tool to extract a generalized fiducial distribution is Markov chain Monte Carlo (MCMC). We propose an alternative way of computing a generalized fiducial distribution that could be used in complex situations. In particular, to overcome the difficulty when the unnormalized fiducial density (needed for MCMC) is intractable, we design a fiducial autoencoder (FAE). The fitted FAE is used to generate generalized fiducial samples of the unknown parameters. To increase accuracy, we then apply an approximate fiducial computation (AFC) algorithm, by rejecting samples that when plugged into a decoder do not replicate the observed data well enough. Our numerical experiments show the effectiveness of our FAE‐based inverse solution and the excellent coverage performance of the AFC‐corrected FAE solution.more » « less
-
Inundation mapping is a critical task for damage assessment, emergency management, and prioritizing relief efforts during a flooding event. Remote sensing has been an effective tool for interpreting and analyzing water bodies and detecting floods over the past decades. In recent years, deep learning algorithms such as convolutional neural networks (CNNs) have demonstrated promising performance for remote sensing image classification for many applications, including inundation mapping. Unlike conventional algorithms, deep learning can learn features automatically from large datasets. This research aims to compare and investigate the performance of two state-of-the-art methods for 3D inundation mapping: a deep learning-based image analysis and a Geomorphic Flood Index (GFI). The first method, deep learning image analysis involves three steps: 1) image classification to delineate flood boundaries, 2) integrate the flood boundaries and topography data to create a three-dimensional (3D) water surface, and 3) compare the 3D water surface with pre-flood topography to estimate floodwater depth. The second method, i.e., GFI, involves three phases: 1) calculate a river basin morphological information, such as river height (hr) and elevation difference (H), 2) calibrate and measure GFI to delineate flood boundaries, and 3) calculate the coefficient parameter ( α ), and correct the value of hr to estimate inundation depth. The methods were implemented to generate 3D inundation maps over Princeville, North Carolina, United States during hurricane Matthew in 2016. The deep learning method demonstrated better performance with a root mean square error (RMSE) of 0.26 m for water depth. It also achieved about 98% in delineating the flood boundaries using UAV imagery. This approach is efficient in extracting and creating a 3D flood extent map at a different scale to support emergency response and recovery activities during a flood event.more » « less
An official website of the United States government

