skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extended fiducial inference: toward an automated process of statistical inference
Abstract While fiducial inference was widely considered a big blunder by R.A. Fisher, the goal he initially set—‘inferring the uncertainty of model parameters on the basis of observations’—has been continually pursued by many statisticians. To this end, we develop a new statistical inference method called extended Fiducial inference (EFI). The new method achieves the goal of fiducial inference by leveraging advanced statistical computing techniques while remaining scalable for big data. Extended Fiducial inference involves jointly imputing random errors realized in observations using stochastic gradient Markov chain Monte Carlo and estimating the inverse function using a sparse deep neural network (DNN). The consistency of the sparse DNN estimator ensures that the uncertainty embedded in observations is properly propagated to model parameters through the estimated inverse function, thereby validating downstream statistical inference. Compared to frequentist and Bayesian methods, EFI offers significant advantages in parameter estimation and hypothesis testing. Specifically, EFI provides higher fidelity in parameter estimation, especially when outliers are present in the observations; and eliminates the need for theoretical reference distributions in hypothesis testing, thereby automating the statistical inference process. Extended Fiducial inference also provides an innovative framework for semisupervised learning.  more » « less
Award ID(s):
2210819 2015498
PAR ID:
10530786
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the Royal Statistical Society Series B: Statistical Methodology
Volume:
87
Issue:
1
ISSN:
1369-7412
Format(s):
Medium: X Size: p. 98-131
Size(s):
p. 98-131
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample sizenat a rate of$$O(n^{\zeta })$$ O ( n ζ ) for some$$0 \le \zeta <1$$ 0 ζ < 1 , while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range$$0\le \zeta < \frac{1}{2}$$ 0 ζ < 1 2 required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models. 
    more » « less
  2. Motivated by a multimodal neuroimaging study for Alzheimer's disease, in this article, we study the inference problem, that is, hypothesis testing, of sequential mediation analysis. The existing sequential mediation solutions mostly focus on sparse estimation, while hypothesis testing is an utterly different and more challenging problem. Meanwhile, the few mediation testing solutions often ignore the potential dependency among the mediators or cannot be applied to the sequential problem directly. We propose a statistical inference procedure to test mediation pathways when there are sequentially ordered multiple data modalities and each modality involves multiple mediators. We allow the mediators to be conditionally dependent and the number of mediators within each modality to diverge with the sample size. We produce the explicit significance quantification and establish theoretical guarantees in terms of asymptotic size, power, and false discovery control. We demonstrate the efficacy of the method through both simulations and an application to a multimodal neuroimaging pathway analysis of Alzheimer's disease. 
    more » « less
  3. Ruiz, F.; Dy, J.; Meent, J.-W. (Ed.)
    Prediction algorithms, such as deep neural networks (DNNs), are used in many domain sciences to directly estimate internal parameters of interest in simulator-based models, especially in settings where the observations include images or complex high-dimensional data. In parallel, modern neural density estimators, such as normalizing flows, are becoming increasingly popular for uncertainty quantification, especially when both parameters and observations are high-dimensional. However, parameter inference is an inverse problem and not a prediction task; thus, an open challenge is to construct conditionally valid and precise confidence regions, with a guaranteed probability of covering the true parameters of the data-generating process, no matter what the (unknown) parameter values are, and without relying on large-sample theory. Many simulator-based inference (SBI) methods are indeed known to produce biased or overly con- fident parameter regions, yielding misleading uncertainty estimates. This paper presents WALDO, a novel method to construct confidence regions with finite-sample conditional validity by leveraging prediction algorithms or posterior estimators that are currently widely adopted in SBI. WALDO reframes the well-known Wald test statistic, and uses a computationally efficient regression-based machinery for classical Neyman inversion of hypothesis tests. We apply our method to a recent high-energy physics problem, where prediction with DNNs has previously led to estimates with prediction bias. We also illustrate how our approach can correct overly confident posterior regions computed with normalizing flows. 
    more » « less
  4. Inference in semi-supervised (SS) settings has gained substantial attention in recent years due to increased relevance in modern big-data problems. In a typical SS setting, there is a much larger-sized unlabeled data, containing only observations of predictors, and a moderately sized labeled data containing observations for both an outcome and the set of predictors. Such data naturally arises when the outcome, unlike the predictors, is costly or difficult to obtain. One of the primary statistical objectives in SS settings is to explore whether parameter estimation can be improved by exploiting the unlabeled data. We propose a novel Bayesian method for estimating the population mean in SS settings. The approach yields estimators that are both efficient and optimal for estimation and inference. The method itself has several interesting artifacts. The central idea behind the method is to model certain summary statistics of the data in a targeted manner, rather than the entire raw data itself, along with a novel Bayesian notion of debiasing. Specifying appropriate summary statistics crucially relies on a debiased representation of the population mean that incorporates unlabeled data through a flexible nuisance function while also learning its estimation bias. Combined with careful usage of sample splitting, this debiasing approach mitigates the effect of bias due to slow rates or misspecification of the nuisance parameter from the posterior of the final parameter of interest, ensuring its robustness and efficiency. Concrete theoretical results, via Bernstein--von Mises theorems, are established, validating all claims, and are further supported through extensive numerical studies. To our knowledge, this is possibly the first work on Bayesian inference in SS settings, and its central ideas also apply more broadly to other Bayesian semi-parametric inference problems. 
    more » « less
  5. Samejima’s graded response model (GRM) has gained popularity in the analyses of ordinal response data in psychological, educational, and health-related assessment.Obtaining high-quality point and interval estimates for GRM parameters attracts a great deal of attention in the literature. In the current work, we derive generalized fiducial inference (GFI) for a family of multidimensional graded response model, implement a Gibbs sampler to perform fiducial estimation, and compare its finite-sample performance with several commonly used likelihood-based and Bayesian approaches via three simulation studies. It is found that the proposed method is able to yield reliable inference even in the presence of small sample size and extreme generating parameter values, outperforming the other candidate methods under investigation. The use of GFI as a convenient tool to quantify sampling variability in various inferential procedures is illustrated by an empirical data analysis using the patient-reported emotional distress data. 
    more » « less