Abstract Climate change adaptation requires building agricultural system resilience to warmer, drier climates. Increasing temporal plant diversity through crop rotation diversification increases yields of some crops under drought, but its potential to enhance crop drought resistance and the underlying mechanisms remain unclear. We conducted a drought manipulation experiment using rainout shelters embedded within a 36-year crop rotation diversity and no-till experiment in a temperate climate and measured a suite of soil and crop developmental and eco-physiological traits in the field and laboratory. We show that diversifying maize-soybean rotations with small grain cereals and cover crops mitigated maize water stress at the leaf and canopy scales and reduced yield losses to drought by 17.1 ± 6.1%, while no-till did not affect maize drought resistance. Path analysis showed a strong correlation between soil organic matter and lower maize water stress despite no significant differences in soil organic matter between rotations or tillage treatments. This positive relationship between soil organic matter and maize water status was not mediated by higher soil water retention or infiltration as often hypothesized, nor differential depth of root water uptake as measured with stable isotopes, suggesting that other mechanisms are at play. Crop rotation diversification is an underappreciated drought management tool to adapt crop production to climate change through managing for soil organic matter.
more »
« less
Probabilistic estimates of drought impacts on agricultural production: Drought Impacts on Agriculture
Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980–2012, including the Millennium Drought in Australia (2001–2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25–45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.
more »
« less
- Award ID(s):
- 1639318
- PAR ID:
- 10038077
- Date Published:
- Journal Name:
- Geophysical Research Letters
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Anthropogenic climate change has already affected drought severity and risk across many regions, and climate models project additional increases in drought risk with future warming. Historically, droughts are typically caused by periods of below‐normal precipitation and terminated by average or above‐normal precipitation. In many regions, however, soil moisture is projected to decrease primarily through warming‐driven increases in evaporative demand, potentially affecting the ability of negative precipitation anomalies to cause drought and positive precipitation anomalies to terminate drought. Here, we use climate model simulations from Phase Six of the Coupled Model Intercomparison Project (CMIP6) to investigate how different levels of warming (1, 2, and 3°C) affect the influence of precipitation on soil moisture drought in the Mediterranean and Western North America regions. We demonstrate that the same monthly precipitation deficits (25th percentile relative to a preindustrial baseline) at a global warming level of 2°C increase the probability of both surface and rootzone soil moisture drought by 29% in the Mediterranean and 32% and 6% in Western North America compared to the preindustrial baseline. Furthermore, the probability of a dry (25th percentile relative to a preindustrial baseline) surface soil moisture month given a high (75th percentile relative to a preindustrial baseline) precipitation month is 6 (Mediterranean) and 3 (Western North America) times more likely in a 2°C world compared to the preindustrial baseline. For these regions, warming will likely increase the risk of soil moisture drought during low precipitation periods while simultaneously reducing the efficacy of high precipitation periods to terminate droughts.more » « less
-
Growing season drought can be devastating to crop yields. Soil microbial communities have the potential to buffer yield loss under drought through increasing plant drought tolerance and soil water retention. Microbial inoculation on agricultural fields has been shown to increase plant growth, but few studies have examined the impact of microbial inoculation on plant and soil microbial drought tolerance. We conducted a rainout shelter experiment and subsequent greenhouse experiment to explore 3 objectives. First, we evaluated the performance of a large rainout shelter design for studying drought in agricultural fields. Second, we tested how crop (corn vs. soybean) and microbial inoculation alter the response of soil microbial composition, diversity, and biomass to drought. Third, we tested whether field inoculation treatments and drought exposure altered microbial communities in ways that promote plant drought tolerance in future generations. In our field experiment, the effects of drought on soil bacterial composition depended on crop type, while drought decreased bacterial diversity in corn plots and drought decreased microbial biomass carbon in soybean plots. Microbial inoculation did not alter overall microbial community composition, plant growth, or drought tolerance despite our efforts to address common barriers to inoculation success. Still, a history of inoculation affected growth of future plant generations in the greenhouse. Our study demonstrates the importance of plant species in shaping microbial community responses to drought and the importance of legacy effects of microbial inoculation.more » « less
-
Abstract Biofuel crops, including annuals such as maize (Zea maysL.), soybean [Glycine max(L.) Merr.], and canola (Brassica napusL.), as well as high‐biomass perennial grasses such as miscanthus (Miscanthus×giganteusJ.M. Greef & Deuter ex Hodkinson & Renvoiz), are candidates for sustainable alternative energy sources. However, large‐scale conversion of croplands to perennial biofuel crops could have substantial impacts on regional water, nutrient, and C cycles due to the longer growing seasons and differences in rooting systems compared with most annual crops. However, due to the limited tools available to nondestructively study the spatiotemporal patterns of root water uptake in situ at field scales, these differences in crop water use are not well known. Geophysical imaging tools such as electrical resistivity (ER) reveal changes in water content in the soil profile. In this study, we demonstrate the use of a novel coupled hydrogeophysical approach with both time domain reflectometry soil water content and ER measurements to compare root water uptake and soil properties of an annual crop rotation with the perennial grass miscanthus, across three growing seasons (2009–2011) in southwest Michigan, USA. We estimated maximum root depths to be between 1.2 and 2.2 m, with the vertical distribution of roots being notably deeper in 2009 relative to 2010 and 2011, likely due to the drought conditions during that first year. Modeled cumulative ET of both crops was underestimated (2–34%) relative to estimates obtained from soil water drawdown in prior studies but was found to be greater in the perennial grass than the annual crops, despite shallower modeled rooting depths in 2010 and 2011.more » « less
-
The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability. ENSO life cycles and the associated teleconnections evolve over multiple years at a global scale. This analysis is the first attempt to characterize the structure of the risk posed by trans-Pacific ENSO teleconnections to crop production in the greater Pacific Basin region. In this analysis we identify the large-scale atmospheric dynamics of ENSO teleconnections that affect heat and moisture stress during the growing seasons of maize, wheat and soy. We propose a coherent framework for understanding how trans-Pacific ENSO teleconnections pose a correlated risk to crop yields in major agricultural belts of the Americas, Australia and China over the course of an ENSO life cycle by using observations and a multi-model ensemble of climate anomalies during crop flowering seasons. Trans-Pacific ENSO teleconnections are often (but not always) offsetting between major producing regions in the Americas and those in northern China or Australia. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in northern China, southern Mexico and the Cerrado in Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Furthermore, multi-year La Niñas can force multi-year growing season anomalies in Argentina and Australia. Most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the following spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the northern midlatitudes that spans the Pacific from northern China to North America and in the southern midlatitudes from Australia to southeast South America. This anomaly directly links the soybean and maize growing seasons of the US, Mexico and China and the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US.more » « less