Nitrous oxide (N2O) is a major greenhouse gas and cultivated soils are the most important anthropogenic source. N2O production and consumption are known to occur at depths below the A or Ap horizon, but their magnitude in situ is largely unknown. At a site in SW Michigan, USA, we measured N2O concentrations at different soil depths and used diffusivity models to examine the importance of depth-specific production and consumption. We also tested the influence of crop and management practices on subsurface N2O production in (1) till versus no-till, (2) a nitrogen fertilizer gradient, and (3) perennial crops including successional vegetation. N2O concentrations below 20 cm exceeded atmospheric concentrations by up to 900 times, and profile concentrations increased markedly with depth except immediately after fertilization when production was intense in the surface horizon, and in winter, when surface emissions were blocked by ice. Diffusivity analysis showed that N2O production at depth was especially important in annual crops, accounting for over 50% of total N2O production when crops were fertilized at recommended rates. At nitrogen fertilizer rates exceeding crop need, subsurface N2O production contributed 25–35% of total surface emissions. Dry conditions deepened the maximum depth of N2O production. Tillage did not. In systems with perennial vegetation, subsurface N2O production contributed less than 20% to total surface emissions. Results suggest that the fraction of total N2O produced in subsurface horizons can be substantial in annual crops, is low under perennial vegetation, appears to be largely controlled by subsurface nitrogen and moisture, and is insensitive to tillage.
more »
« less
Managing nitrogen fertilizers in the field to reduce greenhouse gases.
Improving the management of nitrogen fertilizer makes sense. It can reduce farm costs by increasing nitrogen use efficiency without reducing yields. It can also benefit our environment by reducing the emissions of a potent greenhouse gas called nitrous oxide. Better still, by improving nitrogen management, farmers can receive payment for reducing emissions of this gas through the market place. Agriculture is a source and a sink for greenhouse gases that affect our climate. All three of the major greenhouse gases are produced naturally in agricultural soils—carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Nitrous oxide is the most important in all field crops but rice due to its link with the use of nitrogen fertilizer.
more »
« less
- PAR ID:
- 10039207
- Date Published:
- Journal Name:
- Fertilizer focus
- ISSN:
- 0951-1490
- Page Range / eLocation ID:
- 54-57
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Meta‐analysis on the potential for increasing nitrogen losses from intensifying tropical agricultureAbstract Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta‐analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha−1 year−1would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.more » « less
-
Abstract Lentic systems (lakes and reservoirs) are emission hotpots of nitrous oxide (N2O), a potent greenhouse gas; however, this has not been well quantified yet. Here we examine how multiple environmental forcings have affected N2O emissions from global lentic systems since the pre-industrial period. Our results show that global lentic systems emitted 64.6 ± 12.1 Gg N2O-N yr−1in the 2010s, increased by 126% since the 1850s. The significance of small lentic systems on mitigating N2O emissions is highlighted due to their substantial emission rates and response to terrestrial environmental changes. Incorporated with riverine emissions, this study indicates that N2O emissions from global inland waters in the 2010s was 319.6 ± 58.2 Gg N yr−1. This suggests a global emission factor of 0.051% for inland water N2O emissions relative to agricultural nitrogen applications and provides the country-level emission factors (ranging from 0 to 0.341%) for improving the methodology for national greenhouse gas emission inventories.more » « less
-
Abstract Within oxygen minimum zones, anaerobic processes transform bioavailable nitrogen (N) into the gases dinitrogen (N2) and nitrous oxide (N2O), a potent greenhouse gas. Mesoscale eddies in these regions create heterogeneity in dissolved N tracers and O2concentrations, influencing nonlinear N cycle reactions that depend on them. Here, we use an eddy‐resolving model of the Eastern Tropical South Pacific to show that eddies enhance N2production by between 43% and 64% at the expense of reducing N2O production by between 94% and 104% due to both the steep increase of progressive denitrification steps at vanishing oxygen, and the more effective inhibition of N2O consumption relative to production. Our findings reveal the critical role of eddies in shaping the N cycle of oxygen minimum zones, which is not currently represented by coarse models used for climate studies.more » « less
An official website of the United States government

