Abstract. Nitrogen (N) fertilizer inputs to agricultural soils area leading cause of nitrous oxide (N2O) emissions. Legume cover cropsare an alternative N source that can reduce agricultural N2O emissionscompared to fertilizer N. However, our understanding of episodic N2Oflux following cover crop incorporation by tillage is limited and hasfocused on single-species cover crops. Our study explores whether increasingcover crop functional diversity with a legume–grass mixture can reduce pulseemissions of N2O following tillage. In a field experiment, we plantedcrimson clover (Trifolium incarnatum L.), cereal rye (Secale cereal L.), a clover–rye mixture, and a no-covercontrol at two field sites with contrasting soil fertility properties inMichigan. We hypothesized that N2O flux following tillage of the covercrops would be lower in the mixture and rye compared to the clovertreatment because rye litter can decrease N mineralization rates. Wemeasured N2O for approximately 2 weeks following tillage to capturethe first peak in N2O emissions in each site. Across cover croptreatments, the higher-fertility site, CF, had greater cover crop biomass,2-fold-higher aboveground biomass N, and higher cumulative N2Oemissions than the lower-fertility site, KBS (413.4±67.5 vs. 230.8±42.5 g N2O-N ha−1; P=0.004). Therewas a significant treatment effect on daily emissions at both sites. AtCF, N2O fluxes were higher following clover than the control 6 d aftertillage. At KBS, fluxes from the mixture were higher than rye 8 and 11 dafter tillage. When controlling for soil fertility differences betweensites, clover and mixture led to approximately 2-fold-higher N2Oemissions compared to rye and fallow treatments. We found partial supportfor our hypothesis that N2O would be lower following incorporation ofthe mixture than clover. However, treatment patterns differed by site,suggesting that interactions between cover crop functional types andbackground soil fertility influence N2O emissions during cover cropdecomposition.
more »
« less
Nitrous Oxide (N2O) Emissions from Subsurface Soils of Agricultural Ecosystems
Nitrous oxide (N2O) is a major greenhouse gas and cultivated soils are the most important anthropogenic source. N2O production and consumption are known to occur at depths below the A or Ap horizon, but their magnitude in situ is largely unknown. At a site in SW Michigan, USA, we measured N2O concentrations at different soil depths and used diffusivity models to examine the importance of depth-specific production and consumption. We also tested the influence of crop and management practices on subsurface N2O production in (1) till versus no-till, (2) a nitrogen fertilizer gradient, and (3) perennial crops including successional vegetation. N2O concentrations below 20 cm exceeded atmospheric concentrations by up to 900 times, and profile concentrations increased markedly with depth except immediately after fertilization when production was intense in the surface horizon, and in winter, when surface emissions were blocked by ice. Diffusivity analysis showed that N2O production at depth was especially important in annual crops, accounting for over 50% of total N2O production when crops were fertilized at recommended rates. At nitrogen fertilizer rates exceeding crop need, subsurface N2O production contributed 25–35% of total surface emissions. Dry conditions deepened the maximum depth of N2O production. Tillage did not. In systems with perennial vegetation, subsurface N2O production contributed less than 20% to total surface emissions. Results suggest that the fraction of total N2O produced in subsurface horizons can be substantial in annual crops, is low under perennial vegetation, appears to be largely controlled by subsurface nitrogen and moisture, and is insensitive to tillage.
more »
« less
- PAR ID:
- 10112651
- Date Published:
- Journal Name:
- Ecosystems
- ISSN:
- 1432-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes the ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) vs. conventional tillage (CT). We established replicated NT and CT plots in three CRP fields planted to continuous corn, switchgrass, or restored prairie. For the 2 yr following an initial soybean year in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and CO2emissions by 20% compared with CT conversion. Differences were higher in Year 1 than in Year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after Year 1. In all fields net CO2emissions (as measured by eddy covariance) were positive for the first 2 yr following CT establishment, but following NT establishment net CO2emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared with CT (−6.01 Mg CO2e ha−1 yr−1for NT vs. −0.25 Mg CO2e ha−1 yr−1for CT, on average). We also found that Intergovernmental Panel on Climate Change estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops to reduce C debt and maximize climate benefits.more » « less
-
The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 × higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems.more » « less
-
Soil nitrous oxide (N2O) emissions exhibit high variability in intensively managed cropping systems, which challenges our ability to understand their complex interactions with controlling factors. We leveraged 17-years (2003-2019) of measurements at the Kellogg Biological Station LTER/LTAR site to better understand controls of N2O emissions in four corn–soybean–winter wheat rotations employing Conventional, No-till, Reduced input, and Biologically-based/organic inputs. We used a Random Forest machine learning model to predict daily N2O fluxes, trained separately for each system with 70% of observations, using variables such as crop species, daily air temperature, cumulative 2-day precipitation, water-filled pore space, and soil nitrate and ammonium concentrations. The model explained 29 to 42% of daily N2O flux variability in test data, with greater predictability for the corn phase in each system. The long-term rotations showed different controlling factors and threshold conditions influencing N2O emissions. In the Conventional system, the model identified ammonium (>15 kg N ha-1) and daily temperature (>23 °C) as the most influential variables; in the No-till system, climate variables, precipitation, and temperature were important variables. In low input and organic systems, where red clover (Trifolium repens L.; before corn) and cereal rye (Secale cereale L.; before soybean) cover crops were integrated, nitrate was the predominant variable, followed by precipitation and temperature. In low input and biologically-based systems, red clover residues increased soil nitrogen availability to influence N2O emissions. Long-term data facilitated machine learning for predicting N2O emissions in response to differential controls and threshold responses to management, environmental, and biogeochemical drivers.more » « less
-
Agricultural activities contribute almost half of the total anthropogenic nitrous oxide (N2O) emissions, but proper assessment of mitigation measures is hampered by large uncertainties during the quantification of cropland N2O emissions and mitigation potentials. This review summarizes the up-to-date datasets and approaches to provide spatially explicit and crop-specific assessment of the global mitigation potentials. Here, we show that global cropland N2O emissions have quadrupled to 1.2 Tg N2O-N year 1 over 1961–2020. The mitigation potential is 0.7 Tg N2O-N without compromising the crop production, with 86% from optimizing nitrogen fertilization, three-quarters (78%) from maize (22%), vegetables, and fruits (16%), other crops (15%), wheat (13%), and rice (12%), and over 80% from South Asia, China, the European Union, other American countries, the United States, and Southeast Asia. More accurate estimation of cropland N2O mitigation potentials requires extending the N2O observation network, improving modeling capacity, quantifying the feasibility of mitigation measures, and seeking additional mitigation measures.more » « less
An official website of the United States government

