Abstract For decades, the field of biologically inspired robotics has leveraged insights from animal locomotion to improve the walking ability of legged robots. Recently, “biomimetic” robots have been developed to model how specific animals walk. By prioritizing biological accuracy to the target organism rather than the application of general principles from biology, these robots can be used to develop detailed biological hypotheses for animal experiments, ultimately improving our understanding of the biological control of legs while improving technical solutions. In this work, we report the development and validation of the robot Drosophibot II, a meso-scale robotic model of an adult fruit fly, Drosophila melanogaster. This robot is novel for its close attention to the kinematics and dynamics of Drosophila, an increasingly important model of legged locomotion. Each leg’s proportions and degrees of freedom have been modeled after Drosophila 3D pose estimation data. We developed a program to automatically solve the inverse kinematics necessary for walking and solve the inverse dynamics necessary for mechatronic design. By applying this solver to a fly-scale body structure, we demonstrate that the robot’s dynamics fit those modeled for the fly. We validate the robot’s ability to walk forward and backward via open-loop straight line walking with biologically inspired foot trajectories. This robot will be used to test biologically inspired walking controllers informed by the morphology and dynamics of the insect nervous system, which will increase our understanding of how the nervous system controls legged locomotion.
more »
« less
Fabrication, Modeling, and Control of Plush Robots
Abstract — We present a class of tendon-actuated soft robots, which promise to be low-cost and accessible to non-experts. The fabrication techniques we introduce are largely based on traditional techniques for fabricating plush toys, and so we term the robots created using our approach “plush robots.” A plush robot moves by driving internal winches that pull in (or let out) tendons routed through its skin. We provide a forward simulation model for predicting a plush robot’s deformation behavior given some contractions of its internal winches. We also leverage this forward model for use in an interactive control scheme, in which the user provides a target pose for the robot, and optimal contractions of the robot’s winches are automatically computed in real-time. We fabricate two examples to demonstrate the use of our system, and also discuss the design challenges inherent to plush robots.
more »
« less
- Award ID(s):
- 1637853
- PAR ID:
- 10039433
- Date Published:
- Journal Name:
- Proceedings of the International Conference on Intelligent Robots and Systems
- ISSN:
- 2153-0866
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For decades, the field of biologically inspired robotics has leveraged insights from animal locomotion to improve the walking ability of legged robots. Recently, “biomimetic” robots have been developed to model how specific animals walk. By prioritizing biological accuracy to the target organism rather than the application of general principles from biology, these robots can be used to develop detailed biological hypotheses for animal experiments, ultimately improving our understanding of the biological control of legs while improving technical solutions. Much of this work involves biologically inspired walking controllers informed by the morphology and dynamics of the insect nervous system, which necessitate a robot with highly animal-like structure to prevent a brain-body mismatch. However, methods for codifying suitable fidelity in biomimetic robots currently vary, with limited generalizable methods for robot design. In this work, I outline a general framework for developing biomimetic robots that ensures kinematic and dynamic similarity between the robot and target animal. I then use this framework to develop and validate the robot Drosophibot II, a meso-scale robotic model of an adult fruit fly, Drosophila melanogaster. The resulting robot is novel for its close attention to the kinematics and dynamics of Drosophila, an increasingly important model of legged locomotion. Each leg’s proportions and degrees of freedom are modeled after Drosophila 3D pose estimation data. The predominant actuators for the robot are characterized to determine their inertial, elastic, and viscous properties and subsequently dynamically scale the robot's motions. I then use a developed program to automatically solve the inverse kinematics and inverse dynamics necessary for walking for the robot's structure and that of a to-scale model of the fly. By comparing the output of these models, I demonstrate that the robot and fly are kinematically and dynamically similar. The robot's electromechanical design is presented, then validated by having the robot’s walk forward, backward, and up an incline via open-loop straight line stepping with biologically inspired foot trajectories. Strain data from locations throughout the robot's legs is also recorded during these tests as an analog for mechanosensory feedback in a freely walking animal. Through these experiments, Drosophibot II demonstrates its utility for neuromechanical investigations by providing plausible neural data currently unobtainable in the animal.more » « less
-
Contemporary approaches to perception, planning, estimation, and control have allowed robots to operate robustly as our remote surrogates in uncertain, unstructured environments. This progress now creates an opportunity for robots to operate not only in isolation, but also with and alongside humans in our complex environments. Realizing this opportunity requires an efficient and flexible medium through which humans can communicate with collaborative robots. Natural language provides one such medium, and through significant progress in statistical methods for natural-language understanding, robots are now able to interpret a diverse array of free-form navigation, manipulation, and mobile-manipulation commands. However, most contemporary approaches require a detailed, prior spatial-semantic map of the robot’s environment that models the space of possible referents of an utterance. Consequently, these methods fail when robots are deployed in new, previously unknown, or partially-observed environments, particularly when mental models of the environment differ between the human operator and the robot. This paper provides a comprehensive description of a novel learning framework that allows field and service robots to interpret and correctly execute natural-language instructions in a priori unknown, unstructured environments. Integral to our approach is its use of language as a “sensor”—inferring spatial, topological, and semantic information implicit in natural-language utterances and then exploiting this information to learn a distribution over a latent environment model. We incorporate this distribution in a probabilistic, language grounding model and infer a distribution over a symbolic representation of the robot’s action space, consistent with the utterance. We use imitation learning to identify a belief-space policy that reasons over the environment and behavior distributions. We evaluate our framework through a variety of different navigation and mobile-manipulation experiments involving an unmanned ground vehicle, a robotic wheelchair, and a mobile manipulator, demonstrating that the algorithm can follow natural-language instructions without prior knowledge of the environment.more » « less
-
Ground robots require the crucial capability of traversing unstructured and unprepared terrains and avoiding obstacles to complete tasks in real-world robotics applications such as disaster response. When a robot operates in off-road field environments such as forests, the robot’s actual behaviors often do not match its expected or planned behaviors, due to changes in the characteristics of terrains and the robot itself. Therefore, the capability of robot adaptation for consistent behavior generation is essential for maneuverability on unstructured off-road terrains. In order to address the challenge, we propose a novel method of self-reflective terrain-aware adaptation for ground robots to generate consistent controls to navigate over unstructured off-road terrains, which enables robots to more accurately execute the expected behaviors through robot self-reflection while adapting to varying unstructured terrains. To evaluate our method’s performance, we conduct extensive experiments using real ground robots with various functionality changes over diverse unstructured off-road terrains. The comprehensive experimental results have shown that our self-reflective terrain-aware adaptation method enables ground robots to generate consistent navigational behaviors and outperforms the compared previous and baseline techniques.more » « less
-
null (Ed.)Soft isoperimetric truss robots have demonstrated an ability to grasp and manipulate objects using the members of their structure. The compliance of the members affords large contact areas with even force distribution, allowing for successful grasping even with imprecise open-loop control. In this work we present methods of analyzing and controlling isoperimetric truss robots in the context of grasping and manipulating objects. We use a direct stiffness model to characterize the structural properties of the robot and its interactions with external objects. With this approach we can estimate grasp forces and stiffnesses with limited computation compared to higher fidelity finite elements methods, which, given the many degrees-of-freedom of truss robots, are prohibitively expensive to run on-board. In conjunction with the structural model, we build upon a literature of differential kinematics for truss robots and apply it to the task of manipulating an object within the robot’s workspace.more » « less
An official website of the United States government

