skip to main content


Title: Grasp Analysis and Manipulation Kinematics for Isoperimetric Truss Robots
Soft isoperimetric truss robots have demonstrated an ability to grasp and manipulate objects using the members of their structure. The compliance of the members affords large contact areas with even force distribution, allowing for successful grasping even with imprecise open-loop control. In this work we present methods of analyzing and controlling isoperimetric truss robots in the context of grasping and manipulating objects. We use a direct stiffness model to characterize the structural properties of the robot and its interactions with external objects. With this approach we can estimate grasp forces and stiffnesses with limited computation compared to higher fidelity finite elements methods, which, given the many degrees-of-freedom of truss robots, are prohibitively expensive to run on-board. In conjunction with the structural model, we build upon a literature of differential kinematics for truss robots and apply it to the task of manipulating an object within the robot’s workspace.  more » « less
Award ID(s):
1925030
NSF-PAR ID:
10302234
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
6140 to 6146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although general purpose robotic manipulators are becoming more capable at manipulating various objects, their ability to manipulate millimeter-scale objects are usually limited. On the other hand, ultrasonic levitation devices have been shown to levitate a large range of small objects, from polystyrene balls to living organisms. By controlling the acoustic force fields, ultrasonic levitation devices can compensate for robot manipulator positioning uncertainty and control the grasping force exerted on the target object. The material agnostic nature of acoustic levitation devices and their ability to dexterously manipulate millimeter-scale objects make them appealing as a grasping mode for general purpose robots. In this work, we present an ultrasonic, contact-less manipulation device that can be attached to or picked up by any general purpose robotic arm, enabling millimeter-scale manipulation with little to no modification to the robot itself. This device is capable of performing the very first phase-controlled picking action on acoustically reflective surfaces. With the manipulator placed around the target object, the manipulator can grasp objects smaller in size than the robot's positioning uncertainty, trap the object to resist air currents during robot movement, and dexterously hold a small and fragile object, like a flower bud. Due to the contact-less nature of the ultrasound-based gripper, a camera positioned to look into the cylinder can inspect the object without occlusion, facilitating accurate visual feature extraction. 
    more » « less
  2. Perching onto an object (e.g., tree branches) has recently been leveraged for addressing the limited flight time for flying robots. Successful perching needs a mechanical mechanism to damp out the impact and robustly grasp the object. Generally, such a mechanism requires actuation for grasping. In this article, we present a fully passive mechanism without using any actuator: a mechanically intelligent and passive (MIP) gripper that can be used for either aerial perching or grasping. Initially open, the gripper can be closed by the impact force during perching. After closure, if a sufficient mass (e.g., the robot’s mass) is applied, the gripper can switch to a holding state and maintain that state to hold the mass. Once the mass is removed, the gripper can automatically open. We establish static models for the gripper to predict the required forces for successful state transitions. Based on the models, we develop design guidelines for the gripper so that it can be used for different flying robots with different weights. Experiments are conducted to validate the models. Attaching the gripper onto a quadcopter, we demonstrated aerial perching onto rods and aerial grasping rod-like objects. Because the MIP gripper is lightweight (can reach a mass ratio of 0.75% between the gripper and the grasped object for static grasping), we expect it would be well suited for aerial perching or grasping due to the limited payload capability for flying robots. 
    more » « less
  3. Abstract

    For soft robots to have ubiquitous adoption in practical applications they require soft actuators that provide well‐rounded actuation performance that parallels natural muscle while being inexpensive and easily fabricated. This manuscript introduces a toolkit to rapidly prototype, manufacture, test, and power various designs of hydraulically amplified self‐healing electrostatic (HASEL) actuators with muscle‐like performance that achieve all three basic modes of actuation (expansion, contraction, and rotation). This toolkit utilizes easy‐to‐implement methods, inexpensive fabrication tools, commodity materials, and off‐the‐shelf high‐voltage electronics thereby enabling a wide audience to explore HASEL technology. Remarkably, the actuators created from this easy‐to‐implement toolkit achieve linear strains exceeding 100%, a specific power greater than 150 W kg−1, and ≈20% strain at frequencies above 100 Hz. This combination of large strain, extreme speed, and high specific power yields soft actuators that jump without power‐amplifying mechanisms. Additionally, an efficient fabrication technique is introduced for modular designs of HASEL actuators, which is used to develop soft robotic devices driven by portable electronics. Inspired by the versatility of elephant trunks, the above capabilities are combined to create an untethered continuum robot for grasping and manipulating delicate objects, highlighting the wide potential of the introduced methods for soft robots with increasing sophistication.

     
    more » « less
  4. Abstract Soft robotic grippers can gently grasp and maneuver objects. However, they are difficult to model and control due to their highly deformable fingers and complex integration with robotic systems. This paper investigates the design requirements as well as the grasping capabilities and performance of a soft gripper system based on fluidic prestressed composite (FPC) fingers. An analytical model is constructed as follows: each finger is modeled using the chained composite model (CCM); strain energy and work done by pressure and loads are computed using polynomials with unknown coefficients; net energy is minimized using the Rayleigh–Ritz method to calculate the deflected equilibrium shapes of the finger as a function of pressure and loads; and coordinate transformation and gripper geometries are combined to analyze the grasping performance. The effects of prestrain, integration angle, and finger overlap on the grasping performance are examined through a parametric study. We also analyze gripping performance for cuboidal and spherical objects and show how the grasping force can be controlled by varying fluidic pressure. The quasi-static responses of fabricated actuators are measured under pressures and loads. It is shown that the actuators’ modeled responses agree with the experimental results. This work provides a framework for the theoretical analysis of soft robotic grippers and the methods presented can be extended to model grippers with different types of actuation. 
    more » « less
  5. For robots to be useful for real-world applications, they must be safe around humans, be adaptable to their environment, and operate in an untethered manner. Soft robots could potentially meet these requirements; however, existing soft robotic architectures are limited by their ability to scale to human sizes and operate at these scales without a tether to transmit power or pressurized air from an external source. Here, we report an untethered, inflated robotic truss, composed of thin-walled inflatable tubes, capable of shape change by continuously relocating its joints, while its total edge length remains constant. Specifically, a set of identical roller modules each pinch the tube to create an effective joint that separates two edges, and modules can be connected to form complex structures. Driving a roller module along a tube changes the overall shape, lengthening one edge and shortening another, while the total edge length and hence fluid volume remain constant. This isoperimetric behavior allows the robot to operate without compressing air or requiring a tether. Our concept brings together advantages from three distinct types of robots—soft, collective, and truss-based—while overcoming certain limitations of each. Our robots are robust and safe, like soft robots, but not limited by a tether; are modular, like collective robots, but not limited by complex subunits; and are shape-changing, like truss robots, but not limited by rigid linear actuators. We demonstrate two-dimensional (2D) robots capable of shape change and a human-scale 3D robot capable of punctuated rolling locomotion and manipulation, all constructed with the same modular rollers and operating without a tether. 
    more » « less