ABSTRACT Investigating the foraging ecology and trophic interactions of threatened marine predators is critical to assess how community changes due to anthropogenic activities will affect predator–prey relationships. Two species of threatened coastal dolphins, the Indian Ocean humpback dolphin (Sousa plumbea) and the Indo‐Pacific bottlenose dolphin (Tursiops aduncus), occur off Nosy Be, north‐western Madagascar, in a region where artisanal fisheries are ecologically and socioeconomically important. Here, we investigated the feeding ecology of these two coastal dolphins and their trophic interactions with four other odontocetes using bulk stable carbon and nitrogen isotope analysis (δ13C andδ15N). Humpback dolphins had significantly enrichedδ13C values, reflecting a preference for coastal/benthic prey. Bottlenose dolphins had a broader isotopic niche, suggesting a broader range of prey and foraging habitats. The overlap in isotopic niche of all six odontocete species was limited, indicating partitioning of resources and habitats. Bayesian mass‐balance isotopic mixing models revealed that humpback dolphins forage primarily on reef planktivores (38.9%) and inner reef mesopredators (20.5%), while bottlenose dolphins had a broader diet, including reef‐associated (15%–32%) and pelagic prey (12%–23%). Our study reveals that the reliance on inshore prey by humpback dolphins may place them in competition with coastal fisheries. 
                        more » 
                        « less   
                    
                            
                            Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions
                        
                    
    
            Abstract Asymmetries in responses to climate change have the potential to alter important predator–prey interactions, in part by altering the location and size of spatial refugia for prey. We evaluated the effect of ocean warming on interactions between four important piscivores and four of their prey in the U.S. Northeast Shelf by examining species overlap under historical conditions (1968–2014) and with a doubling inCO2. Because both predator and prey shift their distributions in response to changing ocean conditions, the net impact of warming or cooling on predator–prey interactions was not determined a priori from the range extent of either predator or prey alone. For Atlantic cod, an historically dominant piscivore in the region, we found that both historical and future warming led to a decline in the proportion of prey species’ range it occupied and caused a potential reduction in its ability to exert top‐down control on these prey. In contrast, the potential for overlap of spiny dogfish with prey species was enhanced by warming, expanding their importance as predators in this system. In sum, the decline in the ecological role for cod that began with overfishing in this ecosystem will likely be exacerbated by warming, but this loss may be counteracted by the rise in dominance of other piscivores with contrasting thermal preferences. Functional diversity in thermal affinity within the piscivore guild may therefore buffer against the impact of warming on marine ecosystems, suggesting a novel mechanism by which diversity confers resilience. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1521565
- PAR ID:
- 10039543
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 24
- Issue:
- 1
- ISSN:
- 1354-1013
- Page Range / eLocation ID:
- p. 117-131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog,Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater meanTbandTprefthan those from forests. In contrast,CTmaxandTSMdid not differ significantly between habitats. However,CTmaxdid increase moderately with increasingTb, suggesting that changes inCTmaxmay be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. AlthoughO. pumilioexhibited moderate divergence inTpref,CTmaxappears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain theirTbbelow air temperatures that reach or exceedCTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material.more » « less
- 
            ABSTRACT Temperature mediates performance in ectotherms, affecting their ability to grow, survive, and reproduce. Aggression and evasion are key examples of thermally dependent behaviors that can impact fitness. However, we know relatively little about how the thermal plasticity of such behaviors varies among close relatives and impacts competitive outcomes. Woodland salamanders (Genus:Plethodon) from the Appalachian Mountains are distributed across wide thermal gradients in accordance with latitude or elevation. These plethodontid (lungless) salamanders compete for space and develop hybrid zones where territories overlap among species. Plethodontids tend to exhibit increased aggression at warmer temperatures, suggesting that as temperatures rise, behavioral interactions may be altered in ways that impact hybrid zone dynamics. It is thus far unclear, however, how salamander hybrids, which may encroach on their parent populations and drive competitive exclusion, respond behaviorally to warming. Here, we used staged bouts to examine the effects of temperature on aggression and evasion in thePlethodon shermaniandPlethodon teyahaleehybrid system from the southern Appalachians. The behavior of salamanders from parent populations, particularlyP. shermani,appears to be more sensitive to thermal changes than that of hybrid individuals. Additionally, evasive behavior was significantly more plastic than aggressive behavior in response to warming. Our results suggest that rising temperatures may increase competition for preferable microhabitats, but the effects on behavior among parental and hybrid salamanders will be asymmetric. Temperature may therefore alter the outcomes of competition, determining which populations can persist under rapid warming.more » « less
- 
            Abstract Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) andCO2partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data andIPCC AR5 ensemble climate model data. Three of the four most abundant species,Orbicella faveolata, Montastraea cavernosa,andPorites astreoides, had negative calcification responses to both elevated temperature andpCO2. In the business‐as‐usualCO2emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates.Siderastrea siderea, the other most common species, was insensitive to both temperature andpCO2within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reducedCO2emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species likeS. sidereaare not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reducedCO2emissions can limit future declines in reef calcification.more » « less
- 
            Most megadiverse clades of insects are herbivores, but several large radiations consist almost entirely of predators. Their species numbers make comprehensive direct observations of predator-prey interactions difficult to obtain. Citizen science approaches are increasingly utilized to harvest ecological data for organisms including insects. We use crowdsourced images documenting predator-prey interactions of assassin bugs (Hemiptera: Reduviidae), a speciose clade of predatory insects, to (1) determine the breakdown of assembled online images by geographic region and reduviid subfamily; (2) evaluate if the accumulated images provide new insights into prey diversity; and (3) assess evidence for taxa that feed on pest species, pollinators, and engage in intraguild predation. Photographs were assembled (n = 832) and resulted in an image database that included representatives of 11 subfamilies; most records belonged to diurnal Harpactorinae and Phymatinae, but some subfamilies with poorly understood prey diversity were also documented. Taxa with substantial image representation of prey (21–242 predation events) showed significant overlap with prey reported in the literature. A high percentage of images for Apiomerus Hahn and Phymata Latreille documented predation events on native and non-native bees; percentages varied widely among species of Zelus Fabricius. Arilus cristatus (Linnaeus) was documented to prey on several pest species, with little evidence for pollinator predation. Potential effects of these natural enemies on pollinators and intraguild predators should be further investigated, providing important insights into mechanisms influencing community structure and ecosystems processes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
