skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Converting Forests to Farms: The Economic Benefits of Clearing Forests in Agricultural Settlements in the Amazon
Award ID(s):
1633831
PAR ID:
10039945
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental and Resource Economics
ISSN:
0924-6460
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex changes in land use, land cover, climate, and demographics are combining to stress water security for millions of people in the region. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. For any forest G = (V, E) it is possible to orient the edges E so that no vertex in V has out-degree greater than 1. This paper considers the incremental edge-orientation problem, in which the edges E arrive over time and the algorithm must maintain a low-out-degree edge orientation at all times. We give an algorithm that maintains a maximum out-degree of 3 while flipping at most O(log log n) edge orientations per edge insertion, with high probability in n. The algorithm requires worst-case time O(log n log log n) per insertion, and takes amortized time O(1). The previous state of the art required up to O(log n/ log log n) edge flips per insertion. We then apply our edge-orientation results to the problem of dynamic Cuckoo hashing. The problem of designing simple families H of hash functions that are compatible with Cuckoo hashing has received extensive attention. These families H are known to satisfy static guarantees, but do not come typically with dynamic guarantees for the running time of inserts and deletes. We show how to transform static guarantees (for 1-associativity) into near-state-of-the-art dynamic guarantees (for O(1)-associativity) in a black-box fashion. Rather than relying on the family H to supply randomness, as in past work, we instead rely on randomness within our table-maintenance algorithm. 
    more » « less