skip to main content


Title: Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1: MULTIOBJECTIVE CONSTRAINTS FOR CLIMATE MODEL PARAMETER CHOICES
NSF-PAR ID:
10040225
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
9
Issue:
5
ISSN:
1942-2466
Page Range / eLocation ID:
2008 to 2026
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We review select mature geomorphic transport laws for use in temperate ridge and valley landscapes and compile parameter estimates for use in applications. This work is motivated by a case study of sensitivity analysis, calibration, validation, multimodel comparison, and prediction under uncertainty, which required bounding values for parameter ranges. Considered geomorphic transport formulae span hillslope sediment transport, soil production, and erosion by surface water. We compile or derive estimates for the parameters in these transport formulae. Additionally, we address a common challenge—connecting changes in precipitation distribution to changes in effective erodibility—by using a simple hydrologic model and a method to estimate precipitation distribution parameters using commonly available data. While some parameters are reasonably well constrained, others span orders of magnitude. Some, such as soil infiltration capacity, have a direct physical meaning but are challenging to measure on geologically relevant timescales. Through the process of compiling these ranges we identify common challenges in parameter determination. The issue of comparable units derives from considering an exponent as an empirically inferred coefficient rather than as an expression of a fundamental relationship. The issue of appropriate timescales derives from the mismatch between human measurement and geologic timescales. This contribution thus serves both as a practical compilation for applications and as a synthesis of outstanding challenges in parameter selection for geomorphic transport laws.

     
    more » « less
  2. Abstract We consider a regularization problem whose objective function consists of a convex fidelity term and a regularization term determined by the ℓ 1 norm composed with a linear transform. Empirical results show that the regularization with the ℓ 1 norm can promote sparsity of a regularized solution. The goal of this paper is to understand theoretically the effect of the regularization parameter on the sparsity of the regularized solutions. We establish a characterization of the sparsity under the transform matrix of the solution. When the objective function is block-separable or an error bound of the regularized solution to a known function is available, the resulting characterization can be taken as a regularization parameter choice strategy with which the regularization problem has a solution having a sparsity of a certain level. When the objective function is not block-separable, we propose an iterative algorithm which simultaneously determines the regularization parameter and its corresponding solution with a prescribed sparsity level. Moreover, we study choices of the regularization parameter so that the regularization term can alleviate the ill-posedness and promote sparsity of the resulting regularized solution. Numerical experiments demonstrate that the proposed algorithm is effective and efficient, and the choices of the regularization parameters can balance the sparsity of the regularized solution and its approximation to the minimizer of the fidelity function. 
    more » « less
  3. Abstract This commentary investigates the important role of computational pipeline and parameter choices in performing mutation rate estimation, using the recent article published in this journal by Bergeron et al. entitled “The germline mutational process in rhesus macaque and its implications for phylogenetic dating” as an illustrative example. 
    more » « less