The landscape of automotive in-vehicle networks is changing driven by the vast options for infotainment features and progress toward fully-autonomous vehicles. However, the security of automotive networks is lagging behind feature-driven technologies, and new vulnerabilities are constantly being discovered. In this paper, we introduce a road map towards a security solution for in-vehicle networks that can detect anomalous and failed states of the network and adaptively respond in real-time to maintain a fail-operational system.
more »
« less
Towards a Fail-Operational Intrusion Detection System for In-Vehicle Networks
The landscape of automotive in-vehicle networks is changing driven by the vast options for infotainment features and progress toward fully-autonomous vehicles. However, the security of automotive networks is lagging behind feature-driven technologies, and new vulnerabilities are constantly being discovered. In this paper, we introduce a road map towards a security solution for in-vehicle networks that can detect anomalous and failed states of the network and adaptively respond in real-time to maintain a fail-operational system.
more »
« less
- Award ID(s):
- 1645987
- PAR ID:
- 10040593
- Date Published:
- Journal Name:
- Proceedings of the Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Integration of the Internet of Things (IoT) in the automotive industry has brought benefits as well as security challenges. Significant benefits include enhanced passenger safety and more comprehensive vehicle performance diagnostics. However, current onboard and remote vehicle diagnostics do not include the ability to detect counterfeit parts. A method is needed to verify authentic parts along the automotive supply chain from manufacture through installation and to coordinate part authentication with a secure database. In this study, we develop an architecture for anti-counterfeiting in automotive supply chains. The core of the architecture consists of a cyber-physical trust anchor and authentication mechanisms connected to blockchain-based tracking processes with cloud storage. The key parameters for linking a cyber-physical trust anchor in embedded IoT include identifiers (i.e., serial numbers, special features, hashes), authentication algorithms, blockchain, and sensors. A use case was provided by a two-year long implementation of simple trust anchors and tracking for a coffee supply chain which suggests a low-cost part authentication strategy could be successfully applied to vehicles. The challenge is authenticating parts not normally connected to main vehicle communication networks. Therefore, we advance the coffee bean model with an acoustical sensor to differentiate between authentic and counterfeit tires onboard the vehicle. The workload of secure supply chain development can be shared with the development of the connected autonomous vehicle networks, as the fleet performance is degraded by vehicles with questionable replacement parts of uncertain reliability.more » « less
-
null (Ed.)Cellular Vehicle-to-Everything (C-V2X) networks are increasingly adopted by automotive original equipment manufacturers (OEMs). C-V2X, as defined in 3GPP Release 14 Mode 4, allows vehicles to self-manage the network in absence of a cellular base-station. Since C-V2X networks convey safety-critical messages, it is crucial to assess their security posture. This work contributes a novel set of Denial-of-Service (DoS) attacks on C-V2X networks operating in Mode 4. The attacks are caused by adversarial resource block selection and vary in sophistication and efficiency. In particular, we consider "oblivious" adversaries that ignore recent transmission activity on resource blocks, "smart" adversaries that do monitor activity on each resource block, and "cooperative" adversaries that work together to ensure they attack different targets. We analyze and simulate these attacks to showcase their effectiveness. Assuming a fixed number of attackers, we show that at low vehicle density, smart and cooperative attacks can significantly impact network performance, while at high vehicle density, oblivious attacks are almost as effective as the more sophisticated attacks.more » « less
-
As in-vehicle communication becomes more complex, the automotive community is exploring various architectural options such as centralized and zonal architectures for their numerous benefits. Common characteristics of these architectures include the need for high-bandwidth communication and security, which have been elusive with standard automotive architectures. Further, as automotive communication technologies evolve, it is also likely that multiple link-layer technologies such as CAN and Automotive Ethernet will co-exist. These alternative architectures promise to integrate these diverse sets of technologies. However, architectures that allow such co-existence have not been adequately explored. In this work we explore a new network architecture called Named Data Networking (NDN) to achieve multiple goals: provide a foundational security infrastructure and bridge different link layer protocols such as CAN, LIN, and automotive Ethernet into a unified communication system. We have created a proof-of-concept bench-top testbed using CAN HATS and Raspberry PIs that replay real traffic over CAN and Ethernet to demonstrate how NDN can provide a secure, high-speed bridge between different automotive link layers. We also show how NDN can support communication between centralized or zonal high-power compute components. Security is achieved through digitally signing all Data packets between these components, preventing unauthorized ECUs from injecting arbitrary data into the network. We also demonstrate NDN's ability to prevent DoS and replay attacks between different network segments connected through NDN.more » « less
-
A modern automobile system is a safety-critical distributed embedded system that incorporates more than a hundred Electronic Control Units, a wide range of sensors, and actuators, all connected with several in-vehicle networks. Obviously, integration of these heterogeneous components can lead to subtle errors that can be possibly exploited by malicious entities in the field, resulting in catastrophic consequences. We develop a prototyping platform to enable the functional safety and security exploration of automotive systems. The platform realizes a unique, extensible virtualization environment for the exploration of vehicular systems. The platform includes a CAN simulator that mimics the vehicular CAN bus to interact with various ECUs, together with sensory and actuation capabilities. We show how to explore these capabilities in the safety and security exploration through the analysis of a representative vehicular use case interaction.more » « less
An official website of the United States government

