skip to main content


Title: The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites
Nanoscale metallic material composites consisting of bilayer and trilayer systems of two and three different metallic alternating layers show significant gains in hardness over monolithic single phase films. One of the main applications of these composites can be as protective coatings to technical components to increase their lifespan acting as a mechanical barrier to the carriers of permanent deformation. In this work, we study the strength of bilayer structures made of alternating layers of niobium (Nb) and copper–nickel (Cu–Ni) alloys. The effect of the layer size and composition on strength and hardening as well as the effect of the metal–alloy interface on the dislocation motion is investigated. The simulations reveal a close relationship between the atomic composition of the alloy and the hardening of the film. The results are also compared with experimental findings on nanopillars made of similar structures, and strong similarities are revealed and discussed.  more » « less
Award ID(s):
1634640 1634772
NSF-PAR ID:
10041086
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Research
Volume:
32
Issue:
13
ISSN:
0884-2914
Page Range / eLocation ID:
2542 to 2550
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Metallic nanofoams, cellular structures consisting of interlinked thin nanowires and empty pores, create low density, high surface area materials. These structures can suffer from macroscopically brittle behavior. In this work, we present a multiscale approach to study and explain the mechanical behavior of metallic nanofoams obtained by an electrospinning method. In this multiscale approach, atomistic simulations were first used to obtain the yield surfaces of different metallic nanofoam cell structures. Then, a continuum plasticity model using finite elements was used to predict the alloy nanofoam's overall strength in compression. The manufactured metallic nanofoams were produced by electrospinning a polymeric non-woven fabric containing metal precursors for alloys of copper–nickel and then thermally processing the fabric to create alloy metallic nanofoams. The nanofoams were tested with nanoindentation. The experimental results suggest that the addition of nickel increases the hardening of the nanofoams. The multiscale simulation modeling results agreed qualitatively with the experiments by suggesting that the addition of the alloying can be beneficial to the hardening behavior of the metallic nanofoams and helps to isolate the effects of alloying from morphological changes in the foam. This behavior was related to the addition of solute atoms that prevent the free dislocation movement and increase the strength of the structure. 
    more » « less
  2. ABSTRACT

    A series of 16‐layer polypropylene/flame retardant (PP/FR) film/foam composite structures were produced by microlayer coextrusion. A highly branched PP was used in the foam layers to increase strain hardening and cell stability, while the PP used in the film layers was a high shear viscosity grade to confine bubble growth. In addition to improved tensile properties, the PP/FR composite film/foams exhibited five times the compression modulus of PP/FR composite foams at each FR loading level. The thermal stabilities of the composites were investigated, exhibiting three step decompositions. The FR particles were effective in decreasing flammability by forming intumescent char. The PP/FR‐film/foam‐20 showed self‐extinguishing behavior in a modified vertical burn test, while the PP/FR‐foam‐20 sample continued to burn. Cone calorimetry demonstrated that PP/FR film/foams had lower heat release than PP/FR foams due to the unique alternating film/foam structure of PP/FR film/foams. Scanning electron microscopy imaging of the residual chars from fire testing that the PP/FR composite film/foams showed a more continuous protective char surface when compared with PP/FR composite foams at each FR concentration. The combined data indicate that the formation of a surface film on top of a foam ensures a robust intumescent fire protective barrier for partly foamed materials and shows a new way toward lightweight materials with improved fire safety performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2020,137, 48552.

     
    more » « less
  3. Abstract

    The classic paradigm of physical metallurgy is that the addition of alloying elements to metals increases their strength. It is less known if the solution-hardening can occur in nano-scale objects, and it is totally unknown how alloying can impact the strength of defect-free faceted nanoparticles. Purely metallic defect-free nanoparticles exhibit an ultra-high strength approaching the theoretical limit. Tested in compression, they deform elastically until the nucleation of the first dislocation, after which they collapse into a pancake shape. Here, we show by experiments and atomistic simulations that the alloying of Ni nanoparticles with Co reduces their ultimate strength. This counter-intuitive solution-softening effect is explained by solute-induced local spatial variations of the resolved shear stress, causing premature dislocation nucleation. The subsequent particle deformation requires more work, making it tougher. The emerging compromise between strength and toughness makes alloy nanoparticles promising candidates for applications.

     
    more » « less
  4. In a recent work, we have reported outstanding strength and work hardening exhibited by a metastable high entropy alloy (HEA), Fe42Mn28Co10Cr15Si5 (in at. %), undergoing the strain-induced martensitic transformation from metastable gamma austenite (γ) to stable epsilon martensite (ε). However, the alloy exhibited poor ductility, which was attributed to the presence of the brittle sigma (σ) phase in its microstructure. The present work reports the evolution of microstructure, strength, and ductility of a similar HEA, Fe38.5Mn20Co20Cr15Si5Cu1.5 (in at. %), designed to suppress the formation of σ phase. A cast and then rolled plate of the alloy was processed into four conditions by annealing for 10 and 30 min at 1100 °C and by friction stir processing (FSP) at tool rotation rates of 150 and 400 revolutions per minute (RPM) to facilitate detailed examinations of variable initial grain structures. Neutron diffraction and electron microscopy were employed to characterize the microstructure and texture evolution. The initial materials had variable grain size but nearly 100% γ structure. Diffusionless strain induced γ→ε phase transformation took place under compression with higher rate initially and slower rate at the later stages of deformation, independent on the initial grain size. The transformation facilitated part of plastic strain accommodation and rapid strain hardening owing to a transformation-induced dynamic Hall-Petch-type barrier effect, increase in dislocation density, and texture. The peak strength of nearly 2 GPa was achieved under compression using the structure created by double pass FSP (150 RPM followed by 150 RPM). Remarkably, the tensile elongation exhibited by the alloy was nearly 20% with fracture surfaces featuring a combination of ductile dimples and cleavage. 
    more » « less
  5. Abstract

    2D heterostructures made of transition metal dichalcogenides (TMD) have emerged as potential building blocks for new‐generation 2D electronics due to their interesting physical properties at the interfaces. The bandgap, work function, and optical constants are composition dependent, and the spectrum of applications can be expanded by producing alloy‐based heterostructures. Herein, the successful synthesis of monolayer and bilayer lateral heterostructures, based on ternary alloys of MoS2(1−x)Se2x–WS2(1−x)Se2x, is reported by modifying the ratio of the source precursors; the bandgaps of both materials in the heterostructure are continuously tuned in the entire range of chalcogen compositions. Raman and photoluminescence (PL) spatial maps show good intradomain composition homogeneity. Kelvin probe measurements in different heterostructures reveal composition‐dependent band alignments, which can further be affected by unintentional electronic doping during the growth. The fabrication of sequential multijunction lateral heterostructures with three layers of thickness, composed of quaternary and ternary alloys, is also reported. These results greatly expand the available tools kit for optoelectronic applications in the 2D realm.

     
    more » « less