skip to main content


Title: A Strong Hybrid Fatty Acid Inducible Transcriptional Sensor Built From Yarrowia lipolytica Upstream Activating and Regulatory Sequences
  more » « less
NSF-PAR ID:
10041220
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Journal
Volume:
12
Issue:
10
ISSN:
1860-6768
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Despite well established roles of microRNAs in plant development, few aspects have been addressed to understand their effects in seeds especially on lipid metabolism. In this study, we showed that overexpressing microRNA167A (miR167OE) in camelina (Camelina sativa) under a seed‐specific promoter changed fatty acid composition and increased seed size. Specifically, the miR167OEseeds had a lower α‐linolenic acid with a concomitantly higher linoleic acid content than the wild‐type. This decreased level of fatty acid desaturation corresponded to a decreased transcriptional expression of the camelina fatty acid desaturase3 (CsFAD3) in developing seeds. MiR167 targeted the transcription factor auxin response factor (CsARF8) in camelina, as had been reported previously in Arabidopsis. Chromatin immunoprecipitation experiments combined with transcriptome analysis indicated that CsARF8 bound to promoters of camelinabZIP67andABI3genes. These transcription factors directly or through theABI3‐bZIP12 pathway regulateCsFAD3expression and affect α‐linolenic acid accumulation. In addition, to decipher the miR167A‐CsARF8 mediated transcriptional cascade forCsFAD3suppression, transcriptome analysis was conducted to implicate mechanisms that regulate seed size in camelina. Expression levels of many genes were altered in miR167OE, including orthologs that have previously been identified to affect seed size in other plants. Most notably, genes for seed coat development such as suberin and lignin biosynthesis were down‐regulated. This study provides valuable insights into the regulatory mechanism of fatty acid metabolism and seed size determination, and suggests possible approaches to improve these important traits in camelina.

     
    more » « less
  2. Abstract

    Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis‐regulatory elements (CREs) in promoters of isoprene‐responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene‐responsive genes were characterized using the Arabidopsis cis‐regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT‐1, MYB, and WRKY transcription factors, and light‐responsive elements were overrepresented in promoters of isoprene‐responsive genes; CBF‐, HSF‐, WUS‐binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene‐responsive genes were mainly those important for stress responses: drought‐, salt/osmotic‐, oxidative‐, herbivory/wounding and pathogen‐stress. More than half of the isoprene‐responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD‐ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD‐zipper‐loop‐zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein‐related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD‐ZIP family START‐domain‐containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross‐talk between isoprene‐mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.

     
    more » « less
  3. Abstract

    The United States produces more than 10 million tons of waste oils and fats each year. This paper aims to establish a new biomanufacturing platform that converts waste oils or fats into a series of value‐added products. Our research employs the oleaginous yeastYarrowia lipolyticaas a case study for citric acid (CA) production from waste oils. First, we conducted the computational fluid dynamics (CFD) simulation of the bioreactor system and identified that the extracellular mixing and mass transfer is the first limiting factor of an oil fermentation process due to the insolubility of oil in water. Based on the CFD simulation results, the bioreactor design and operating conditions were optimized and successfully enhanced oil uptake and bioconversion in fed‐batch fermentation experiments. After that, we investigated the impacts of cell morphology on oil uptake, intracellular lipid accumulation, and CA formation by overexpressing and deleting theMHY1gene in the wild typeY. lipolyticaATCC20362. Fairly good linear correlations (R2 > 0.82) were achieved between cell morphology and productivities of biomass, lipid, and CA. Finally, fermentation kinetics with both glucose and oil substrates were compared and the oil fermentation process was carefully evaluated. Our study suggests that waste oils or fats can be economical feedstocks for biomanufacturing of many high‐value products.

     
    more » « less
  4. Abstract

    Yarrowia lipolyticais an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study usedY. lipolyticaas a host organism for the production of TAL via expression of the 2‐pyrone synthase gene fromGerbera hybrida. Induction of lipid biosynthesis by nitrogen‐limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut‐and‐paste transposon to mobilize and integrate multiple copies of the 2‐pyrone synthase gene. Strain modifications and batch fermentation in nitrogen‐limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.

     
    more » « less
  5. Abstract

    The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified threeBiPhomologs in theSolanum tuberosum(potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed thatStBiP1andStBiP2grouped withAtBiP2, whereasStBiP3grouped withAtBiP3. While the protein sequences and folding structures are highly similar, theseStBiPsare distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and ArabidopsisBiP1andBiP2promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereasBiP3promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture ofBiPpromoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.

     
    more » « less