skip to main content


Title: Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis
Abstract

Yarrowia lipolyticais an oleaginous yeast that is recognized for its ability to accumulate high levels of lipids, which can serve as precursors to biobased fuels and chemicals. Polyketides, such as triacetic acid lactone (TAL), can also serve as a precursor for diverse commodity chemicals. This study usedY. lipolyticaas a host organism for the production of TAL via expression of the 2‐pyrone synthase gene fromGerbera hybrida. Induction of lipid biosynthesis by nitrogen‐limited growth conditions increased TAL titers. We also manipulated basal levels of TAL production using a DNA cut‐and‐paste transposon to mobilize and integrate multiple copies of the 2‐pyrone synthase gene. Strain modifications and batch fermentation in nitrogen‐limited medium yielded TAL titers of 2.6 g/L. Furthermore, we show that minimal medium allows TAL to be readily concentrated at >94% purity and converted at 96% yield to pogostone, a valuable antibiotic. Modifications of this reaction scheme yielded diverse related compounds. Thus, oleaginous organisms have the potential to be flexible microbial biofactories capable of economical synthesis of platform chemicals and the generation of industrially relevant molecules.

 
more » « less
NSF-PAR ID:
10059480
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
115
Issue:
9
ISSN:
0006-3592
Page Range / eLocation ID:
p. 2383-2388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Kluyveromyces marxianusis a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. UnlikeSaccharomyces cerevisiae, K. marxianusgrows on low‐cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluatedK. marxianusfor the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2‐pyrone synthase (2‐PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high‐stability 2‐PS mutant and a promoter substitution increased titer four‐fold. 2‐PS expression from a multi‐copy pKD1‐based plasmid improved TAL titers a further five‐fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed‐batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    The United States produces more than 10 million tons of waste oils and fats each year. This paper aims to establish a new biomanufacturing platform that converts waste oils or fats into a series of value‐added products. Our research employs the oleaginous yeastYarrowia lipolyticaas a case study for citric acid (CA) production from waste oils. First, we conducted the computational fluid dynamics (CFD) simulation of the bioreactor system and identified that the extracellular mixing and mass transfer is the first limiting factor of an oil fermentation process due to the insolubility of oil in water. Based on the CFD simulation results, the bioreactor design and operating conditions were optimized and successfully enhanced oil uptake and bioconversion in fed‐batch fermentation experiments. After that, we investigated the impacts of cell morphology on oil uptake, intracellular lipid accumulation, and CA formation by overexpressing and deleting theMHY1gene in the wild typeY. lipolyticaATCC20362. Fairly good linear correlations (R2 > 0.82) were achieved between cell morphology and productivities of biomass, lipid, and CA. Finally, fermentation kinetics with both glucose and oil substrates were compared and the oil fermentation process was carefully evaluated. Our study suggests that waste oils or fats can be economical feedstocks for biomanufacturing of many high‐value products.

     
    more » « less
  4. Abstract

    Photosynthetic microalgae likeNannochloropsishold enormous potential as sustainable, light‐driven biofactories for the production of high‐value natural products such as terpenoids.Nannochloropsis oceanicais distinguished as a particularly robust host with extensive genomic and transgenic resources available. Its capacity to grow in wastewater, brackish, and sea waters, coupled with advances in microalgal metabolic engineering, genome editing, and synthetic biology, provides an excellent opportunity. In the present work, we demonstrate howN. oceanicacan be engineered to produce the diterpene casbene—an important intermediate in the biosynthesis of pharmacologically relevant macrocyclic diterpenoids. Casbene accumulated after stably expressing and targeting the casbene synthase fromDaphne genkwa(DgTPS1) to the algal chloroplast. The engineered strains yielded production titers of up to 0.12 mg g−1total dry cell weight (DCW) casbene. Heterologous overexpression and chloroplast targeting of two upstream rate‐limiting enzymes in the 2‐C‐methyl‐d‐erythritol 4‐phosphate pathway,Coleus forskohlii1‐deoxy‐d‐xylulose‐5‐phosphate synthase and geranylgeranyl diphosphate synthase genes, further enhanced the yield of casbene to a titer up to 1.80 mg g−1DCW. The results presented here form a basis for further development and production of complex plant diterpenoids in microalgae.

     
    more » « less
  5. Background: Although microalgal biofuels have potential advantages over conventional fossil fuels, high production costs limit their application in the market. We developed bio-flocculation and incubation methods for the marine alga Nannochloropsis oceanica CCMP1779 and the oleaginous fungus Mortierella elongata AG77 resulting in increased oil productivity. Results: Grown separately and then combining the cells the M. elongata mycelium could efficiently capture N. oceanica due to an intricate cellular interaction between the two species leading to bio-flocculation. Use of a high-salt culture medium induced accumulation of triacylglycerol (TAG) and enhanced the content of polyunsaturated fatty acids (PUFAs) including arachidonic acid (ARA) and docosahexaenoic acid (DHA) in M. elongata. To increase TAG productivity in the alga, we developed an effective reduced nitrogen supply regime based on ammonium in environmental photobioreactors (ePBRs). Under optimized conditions, N. oceanica produced high levels of TAG that could be indirectly monitored by following chlorophyll content. Combining N. oceanica and M. elongata to initiate bio-flocculation yielded high levels of TAG and total fatty acids, ~15% and 22% of total dry weight (DW), respectively, as well as high levels of PUFAs. Genetic engineering N. oceanica for higher TAG content in nutrient-replete medium was accomplished by overexpressing DGTT5, a gene encoding the type II acyl-CoA:diacylglycerol acyltransferase 5. Combined with bioflocculation this approach led to increased production of TAG under nutrient replete conditions (~10% of DW) compared to the wild type (~6% of DW). Conclusions: The combined use of M. elongata and N. oceanica with available genomes and genetic engineering tools for both species opens up new avenues to improve bio-fuel productivity and allows the engineering of polyunsaturated fatty acids. Keywords: Microalgae, Filamentous fungi, Flocculation, Cell wall interaction, Biofuel, Nitrogen starvation, Polyunsaturated fatty acid, Triacylglycerol 
    more » « less