skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DEX: Query Execution in a Delta-based Storage System
The increasing reliance on robust data-driven decision-making across many domains has made it necessary for data management systems to manage many thousands to millions of versions of datasets, acquired or constructed at various stages of analysis pipelines over time. Delta encoding is an effective and widely-used solution to compactly store a large number of datasets, that simultaneously exploits redundancies across them and keeps the average retrieval cost of reconstructing any dataset low. However, supporting any kind of rich retrieval or querying functionality, beyond single dataset checkout, is challenging in such storage engines. In this paper, we initiate a systematic study of this problem, and present DEX, a novel stand-alone delta-oriented execution engine, whose goal is to take advantage of the already computed deltas between the datasets for efficient query processing. In this work, we study how to execute checkout, intersection, union and t-threshold queries over record-based files; we show that processing of even these basic queries leads to many new and unexplored challenges and trade-offs. Starting from a query plan that confines query execution to a small set of deltas, we introduce new transformation rules based on the algebraic properties of the deltas, that allow us to explore the search space of alternative plans. For the case of checkout, we present a dynamic programming algorithm to efficiently select the optimal query plan under our cost model, while we design efficient heuristics to select effective plans that vastly outperform the base checkout-then-query approach for other queries. A key characteristic of our query execution methods is that the computational cost is primarily dependent on the size and the number of deltas in the expression (typically small), and not the input dataset versions (which can be very large). We have implemented DEX prototype on top of git, a widely used version control system. We present an extensive experimental evaluation on synthetic data with diverse characteristics, that shows that our methods perform exceedingly well compared to the baseline.  more » « less
Award ID(s):
1650755
PAR ID:
10041784
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2017 ACM International Conference on Management of Data (SIGMOD)
Page Range / eLocation ID:
171 to 186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a non-intrusive approach to robust query processing that can be used on top of any SQL execution engine. To reduce the risk of selecting highly sub-optimal query plans, we execute multiple plans in parallel. Query processing finishes once the first of these plans finishes execution. Plans are selected to be complementary in terms of the intermediate results they generate. This increases robustness to cardinality estimation errors, making cost prediction hard, that concern a subset of candidate results. We present multiple cost-based approaches to selecting plans for robust execution. The first approach uses a simple cost model, based on diversity of intermediate results. The second approach features a probabilistic model, approximating expected execution overheads, given uncertainty on true intermediate result sizes. We present greedy and exhaustive algorithms to select optimal plans according to those cost models. The experiments demonstrate that executing multiple plans in parallel is preferable over executing single plans that are occasionally sub-optimal, as well as over several baselines. 
    more » « less
  2. Cost-based query optimization remains a critical task in relational databases even after decades of research and industrial development. Query optimizers rely on a large range of statistical synopses for accurate cardinality estimation. As the complexity of selections and the number of join predicates increase, two problems arise. First, statistics cannot be incrementally composed to effectively estimate the cost of the sub-plans generated in plan enumeration. Second, small errors are propagated exponentially through joins, which can lead to severely sub-optimal plans. In this paper, we introduce COMPASS, a novel query optimization paradigm for in-memory databases based on a single type of statistics---Fast-AGMS sketches. In COMPASS, query optimization and execution are intertwined. Selection predicates and sketch updates are pushed-down and evaluated online during query optimization. This allows Fast-AGMS sketches to be computed only over the relevant tuples---which enhances cardinality estimation accuracy. Plan enumeration is performed over the query join graph by incrementally composing attribute-level sketches---not by building a separate sketch for every sub-plan. We prototype COMPASS in MapD -- an open-source parallel database -- and perform extensive experiments over the complete JOB benchmark. The results prove that COMPASS generates better execution plans -- both in terms of cardinality and runtime -- compared to four other database systems. Overall, COMPASS achieves a speedup ranging from 1.35X to 11.28X in cumulative query execution time over the considered competitors. Supplementary Material Read me (3448016.3452840_readme.pdf) Download 472.23 KB Source Code (3448016.3452840_source_code.zip) Download 6.94 MB MP4 File (3448016.3452840.mp4) Cost-based query optimization remains a critical task in relational databases even after decades of research and industrial development. Query optimizers rely on a large range of statistical synopses -- including attribute-level histograms and table-level samples -- for accurate cardinality estimation. As the complexity of selection predicates and the number of join predicates increase, two problems arise. First, statistics cannot be incrementally composed to effectively estimate the cost of the sub-plans generated in plan enumeration. Second, small errors are propagated exponentially through joins, which can lead to severely sub-optimal plans. In this paper, we introduce COMPASS, a novel query optimization paradigm for in-memory databases based on a single type of statistics---Fast-AGMS sketches. In COMPASS, query optimization and execution are intertwined. Selection predicates and sketch updates are pushed-down and evaluated online during query optimization. This allows Fast-AGMS sketches to be computed only over the relevant tuples---which enhances cardinality estimation accuracy. Plan enumeration is performed over the query join graph by incrementally composing attribute-level sketches---not by building a separate sketch for every sub-plan.We prototype COMPASS in MapD -- an open-source parallel database -- and perform extensive experiments over the complete JOB benchmark. The results prove the reduced overhead COMPASS incurs, while generating better execution plans -- both in terms of cardinality and runtime -- compared to four other database systems. Overall, COMPASS achieves a speedup ranging from 1.89X to 7.09X in cumulative query execution time over the considered competitors. Moreover, COMPASS is the only optimizer that consistently generates effective plans for complex queries with 10 or more joins. 
    more » « less
  3. null (Ed.)
    Query Optimization remains an open problem for Big Data Management Systems. Traditional optimizers are cost-based and use statistical estimates of intermediate result cardinalities to assign costs and pick the best plan. However, such estimates tend to become less accurate because of filtering conditions caused either from undetected correlations between multiple predicates local to a single dataset, predicates with query parameters, or predicates involving user-defined functions (UDFs). Consequently, traditional query optimizers tend to ignore or miscalculate those settings, thus leading to suboptimal execution plans. Given the volume of today’s data, a suboptimal plan can quickly become very inefficient. In this work, we revisit the old idea of runtime dynamic optimization and adapt it to a shared-nothing distributed database system, AsterixDB. The optimization runs in stages (re-optimization points), starting by first executing all predicates local to a single dataset. The intermediate result created from each stage is used to re-optimize the remaining query. This re-optimization approach avoids inaccurate intermediate result cardinality estimations, thus leading to much better execution plans. While it introduces the overhead for materializing these intermediate results, our experiments show that this overhead is relatively small and it is an acceptable price to pay given the optimization benefits. In fact, our experimental evaluation shows that runtime dynamic optimization leads to much better execution plans as compared to the current default AsterixDB plans as well as to plans produced by static cost-based optimization (i.e. based on the initial dataset statistics) and other state-of-the-art approaches. 
    more » « less
  4. Analytics database workloads often contain queries that are executed repeatedly. Existing optimization techniques generally prioritize keeping optimization cost low, normally well below the time it takes to execute a single instance of a query. If a given query is going to be executed thousands of times, could it be worth investing significantly more optimization time? In contrast to traditional online query optimizers, we propose an offline query optimizer that searches a wide variety of plans and incorporates query execution as a primitive. Our offline query optimizer combines variational auto-encoders with Bayesian optimization to find optimized plans for a given query. We compare our technique to the optimal plans possible with PostgreSQL and recent RL-based systems over several datasets, and show that our technique finds faster query plans. 
    more » « less
  5. We address the problem of compactly storing a large number of versions (snapshots) of a collection of keyed documents or records in a distributed environment, while efficiently answering a variety of retrieval queries over those, including retrieving full or partial versions, and evolution histories for specific keys. We motivate the increasing need for such a system in a variety of application domains, carefully explore the design space for building such a system and the various storage-computation-retrieval trade-offs, and discuss how different storage layouts influence those trade-offs. We propose a novel system architecture that satisfies the key desiderata for such a system, and offers simple tuning knobs that allow adapting to a specific data and query workload. Our system is intended to act as a layer on top of a distributed key-value store that houses the raw data as well as any indexes. We design novel off-line storage layout algorithms for efficiently partitioning the data to minimize the storage costs while keeping the retrieval costs low. We also present an online algorithm to handle new versions being added to system. Using extensive experiments on large datasets, we demonstrate that our system operates at the scale required in most practical scenarios and often outperforms standard baselines, including a delta-based storage engine, by orders-of-magnitude. 
    more » « less