skip to main content


Title: Forget Diversity, Our Project is Due
https://peer.asee.org/28378 This research paper examines how four first-year engineering students interact with one another in teams to answer two research questions: 1) How do students experience working in diverse teams? and 2) Do their perceptions of diversity, affect, and engineering practice change as a result of working in diverse teams? Despite engineering's emphasis on developing students’ teaming skills, little research has been conducted on how students develop sensitivity to students from different cultures and backgrounds within diverse teams. We interviewed four students in a first-semester, first-year engineering team twice for a total of eight interviews to understand their experiences working in diverse teams. Each interview was analyzed using a modified form of Interpretative Phenomenological Analysis (IPA) to understand the lived experience of each participant. In this paper, we present the results from the qualitative analysis of one team’s complete interviews as a first step in the larger research project.  more » « less
Award ID(s):
1531586
NSF-PAR ID:
10042264
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. https://peer.asee.org/27918 Engineering has become a globally focused career with the need to work with people from diverse backgrounds. Researchers seeking to improve students’ teaming skills have found ways to assess team member effectiveness and development of teaming skills. Despite the emphasis on the importance of developing engineering students’ teaming skills, little research has been conducted on how students develop sensitivity for students from different cultures and backgrounds within teams in first-year engineering programs. Here we define diversity sensitivity as students’ multicultural openness and actions taken to incorporate diverse students. To address the lack of literature on diversity and teaming this work examines the following research questions: What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? How do students’ perceptions of diversity, affect, and engineering practices change as a result of working on diverse teams? The focus of this paper is on the first phase of this three phase project, in which students’ multicultural openness, diversity sensitivity, and teaming effectiveness were measured quantitatively. Additionally, results from qualitative in-depth interviews further develop emerging trends in the quantitative portions of the work. Survey data were collected from participants enrolled in first semester first-year engineering programs at two institutions (n = 1206) as well as data from the Comprehensive Assessment of Team Member Effectiveness (n = 2763 inclusive of survey participants). We used linear modeling, advanced clustering techniques, and pre-post comparisons to understand underlying student attitudes as well as the ways in which students’ attitudes may shift over the course of the semester. Preliminary results indicate that students’ awareness of diversity increased over the semester; however, unwillingness to take action to support diverse groups also increased. We also found that student attitudes towards teaming are ‘sticky’ and difficult to shift over a single-semester experience even when teaming effectiveness and diversity are explicitly taught in the classroom. Additionally, five teams were observed throughout the course of the semester. These observations were conducted to understand how students interact in ways both explicit and implicit. that may or may not improve belongingness in engineering during teaming activities. Students from teams were interviewed individually after completion of their project to understand their perceptions of diversity. Initial trends indicate a valuing of diversity but a lack of adaptation for diverse individuals due to the demands of engineering tasks. Results of this quantitative and qualitative work were used to further refine instruments and data collection protocols for replication in the subsequent phases of the project. 
    more » « less
  2. Teaming is a core part of engineering education, especially in the first and last years of engineering when project work is a prevalent focus. The literature on the effects of working in diverse teams is mixed. Negative findings include decreased affect, increased frustration, and sustained conflict in teams. Positive findings include increased productivity, production of high quality products, and divergent-thinking and idea generation. Given these mixed findings, it becomes important to not only understand the practical outputs of working in diverse teams, but also how the experience of working in diverse teams influences whether students see themselves as engineers and whether or not they feel they belong in engineering. Our project, Building Supports for Diversity through Engineering Teams, investigates how students’ attitudes towards diversity influence how students experience work in diverse teams through addressing two main research questions: 1) What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? 2) How do students’ perceptions of diversity, affect, and engineering practices change because of working on diverse teams? Using a multi-method approach, we deployed survey instruments to determine changes in student’s attitudes about teaming, diversity sensitivity, and openness attitudes. We also observed students working in teams and interviewed these students about their perceptions of diversity and experiences in their teams. Preliminary results of the quantitative phase show that variance in students’ attitudes about diversity significantly increase over the semester, further reflecting the mixed results that have been seen previously in the literature. Additionally, Social Network Analysis was used to characterize the social structure practices of a multi-section, large-enrollment first-year engineering course. This reveals the underlying social structure of the environment, its inclusiveness, and how diverse students work with others on engineering. Initial results indicate that students are included in social networks regardless of gender and race. Preliminary results of the qualitative phase, using Interpretive Phenomenological Analysis, have yielded relationships between student’s definitions, valuation, and enactment of diversity in engineering spaces. Individual student’s incoming attitudes of diversity and previous experiences interact with practical needs in first-year engineering classrooms to create different microclimates within each team. These microclimates depict tensions between what instructors emphasize about diversity, stereotypes of engineering as focused on technical instead of social skills, and pragmatic forces of “getting the job done.” This knowledge can help explain some of the complexity behind the conflicting literature on diversity in teams. Ultimately, this research can help us understand how to build inclusive and diverse environments that guide students to learn how to understand their own complex relationship, understanding, and enactment of diversity in engineering. By understanding how students make sense of diversity in engineering spaces, educators and researchers can figure out how to introduce these concepts in relevant ways so that students can inclusively meet the grand challenges in engineering. This curriculum integration, in turn, can improve team interactions and the climate of engineering for underrepresented groups. 
    more » « less
  3. This research paper focuses on the effect of recent national events on first-year engineering students’ attitudes about their political identity, social welfare, perspectives of diversity, and approaches to social situations. Engineering classrooms and cultures often focus on mastery of content and technical expertise with little prioritization given to integrating social issues into engineering. This depoliticization (i.e., the removal of social issues) in engineering removes the importance of issues related to including diverse individuals in engineering, working in diverse teams, and developing cultural sensitivity. This study resulted from the shift in the national discourse, during the 2016 presidential election, around diversity and identities in and out of the academy. We were collecting interview data as a part of a larger study on students attitudes about diversity in teams. Because these national events could affect students’ perceptions of our research topic, we changed a portion of our interviews to discuss national events in science, technology, engineering, and mathematics (STEM) classrooms and how students viewed these events in relation to engineering. We interviewed first-year undergraduate students (n = 12) who indicated large differences of attitudes towards diverse individuals, experiences with diverse team members, and/or residing at the intersection of multiple diversity markers. We asked participants during the Spring of 2017 to reflect on the personal impact of recent national events and how political discussions have or have not been integrated into their STEM classrooms. During interviews students were asked: 1) Have recent national events impacted you in any way? 2) Have national events been discussed in your STEM classes? 3) If so, what was discussed and how was it discussed? 4) Do these conversations have a place in STEM classes? 5) Are there events you wish were discussed that have not been? Inductive coding was used to analyze interviews and develop themes that were audited for quality by the author team. Two preliminary themes emerged from analysis: political awareness and future-self impact. Students expressed awareness of current political events at the local, national and global levels. They recognized personal and social impacts that these events imposed on close friends, family members, and society. However, students were unsure of how to interpret political dialogue as it relates to policy in engineering disciplines and practices. This uncertainty led students to question their future-selves or careers in engineering. As participants continued to discuss their uncertainty, they expressed a desire to make explicit connections between politics and STEM and their eventual careers in STEM. These findings suggest that depoliticization in the classroom results in engineering students having limited consciousness of how political issues are relevant to their field. This disconnect of political discourse in the classroom gives us a better understanding of how engineering students make sense of current national events in the face of depoliticization. By re-politicising STEM classrooms in a way relevant to students’ futures, educators can better utilize important dialogues to help students understand how their role as engineers influence society and how the experiences of society can influence their practice of engineering. 
    more » « less
  4. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less
  5. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less