skip to main content


Title: Building Supports for Diversity through Engineering Teams
https://peer.asee.org/27918 Engineering has become a globally focused career with the need to work with people from diverse backgrounds. Researchers seeking to improve students’ teaming skills have found ways to assess team member effectiveness and development of teaming skills. Despite the emphasis on the importance of developing engineering students’ teaming skills, little research has been conducted on how students develop sensitivity for students from different cultures and backgrounds within teams in first-year engineering programs. Here we define diversity sensitivity as students’ multicultural openness and actions taken to incorporate diverse students. To address the lack of literature on diversity and teaming this work examines the following research questions: What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? How do students’ perceptions of diversity, affect, and engineering practices change as a result of working on diverse teams? The focus of this paper is on the first phase of this three phase project, in which students’ multicultural openness, diversity sensitivity, and teaming effectiveness were measured quantitatively. Additionally, results from qualitative in-depth interviews further develop emerging trends in the quantitative portions of the work. Survey data were collected from participants enrolled in first semester first-year engineering programs at two institutions (n = 1206) as well as data from the Comprehensive Assessment of Team Member Effectiveness (n = 2763 inclusive of survey participants). We used linear modeling, advanced clustering techniques, and pre-post comparisons to understand underlying student attitudes as well as the ways in which students’ attitudes may shift over the course of the semester. Preliminary results indicate that students’ awareness of diversity increased over the semester; however, unwillingness to take action to support diverse groups also increased. We also found that student attitudes towards teaming are ‘sticky’ and difficult to shift over a single-semester experience even when teaming effectiveness and diversity are explicitly taught in the classroom. Additionally, five teams were observed throughout the course of the semester. These observations were conducted to understand how students interact in ways both explicit and implicit. that may or may not improve belongingness in engineering during teaming activities. Students from teams were interviewed individually after completion of their project to understand their perceptions of diversity. Initial trends indicate a valuing of diversity but a lack of adaptation for diverse individuals due to the demands of engineering tasks. Results of this quantitative and qualitative work were used to further refine instruments and data collection protocols for replication in the subsequent phases of the project.  more » « less
Award ID(s):
1531586
NSF-PAR ID:
10042267
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Teaming is a core part of engineering education, especially in the first and last years of engineering when project work is a prevalent focus. The literature on the effects of working in diverse teams is mixed. Negative findings include decreased affect, increased frustration, and sustained conflict in teams. Positive findings include increased productivity, production of high quality products, and divergent-thinking and idea generation. Given these mixed findings, it becomes important to not only understand the practical outputs of working in diverse teams, but also how the experience of working in diverse teams influences whether students see themselves as engineers and whether or not they feel they belong in engineering. Our project, Building Supports for Diversity through Engineering Teams, investigates how students’ attitudes towards diversity influence how students experience work in diverse teams through addressing two main research questions: 1) What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? 2) How do students’ perceptions of diversity, affect, and engineering practices change because of working on diverse teams? Using a multi-method approach, we deployed survey instruments to determine changes in student’s attitudes about teaming, diversity sensitivity, and openness attitudes. We also observed students working in teams and interviewed these students about their perceptions of diversity and experiences in their teams. Preliminary results of the quantitative phase show that variance in students’ attitudes about diversity significantly increase over the semester, further reflecting the mixed results that have been seen previously in the literature. Additionally, Social Network Analysis was used to characterize the social structure practices of a multi-section, large-enrollment first-year engineering course. This reveals the underlying social structure of the environment, its inclusiveness, and how diverse students work with others on engineering. Initial results indicate that students are included in social networks regardless of gender and race. Preliminary results of the qualitative phase, using Interpretive Phenomenological Analysis, have yielded relationships between student’s definitions, valuation, and enactment of diversity in engineering spaces. Individual student’s incoming attitudes of diversity and previous experiences interact with practical needs in first-year engineering classrooms to create different microclimates within each team. These microclimates depict tensions between what instructors emphasize about diversity, stereotypes of engineering as focused on technical instead of social skills, and pragmatic forces of “getting the job done.” This knowledge can help explain some of the complexity behind the conflicting literature on diversity in teams. Ultimately, this research can help us understand how to build inclusive and diverse environments that guide students to learn how to understand their own complex relationship, understanding, and enactment of diversity in engineering. By understanding how students make sense of diversity in engineering spaces, educators and researchers can figure out how to introduce these concepts in relevant ways so that students can inclusively meet the grand challenges in engineering. This curriculum integration, in turn, can improve team interactions and the climate of engineering for underrepresented groups. 
    more » « less
  2. https://peer.asee.org/28378 This research paper examines how four first-year engineering students interact with one another in teams to answer two research questions: 1) How do students experience working in diverse teams? and 2) Do their perceptions of diversity, affect, and engineering practice change as a result of working in diverse teams? Despite engineering's emphasis on developing students’ teaming skills, little research has been conducted on how students develop sensitivity to students from different cultures and backgrounds within diverse teams. We interviewed four students in a first-semester, first-year engineering team twice for a total of eight interviews to understand their experiences working in diverse teams. Each interview was analyzed using a modified form of Interpretative Phenomenological Analysis (IPA) to understand the lived experience of each participant. In this paper, we present the results from the qualitative analysis of one team’s complete interviews as a first step in the larger research project. 
    more » « less
  3. This work-in-progress research paper describes the initial findings of research on students’ attitudes about diversity in first-year engineering teams. We used quantitative pre- and post-survey data and qualitative interviews with student teams to understand students’ initial attitudes about diversity and teaming and how those were affected by engineering teaming experiences over a semester. The qualitative and quantitative data analyses interact throughout the project’s iterations, with each informing the other. Here, we review the progress made through in-depth qualitative analysis when compared to survey data about changes in variance of students’ attitudes towards teaming. By using an iterative mixed methods approach, we are able to explore the subtle distinctions in students’ attitudes and experiences affecting diverse teaming experiences. In this paper, we will detail this iterative process and how it has produced more nuanced findings than a particular research paradigm alone. 
    more » « less
  4. null (Ed.)
    Engineers need to develop professional skills, including the ability to work successfully in teams and to communicate within and outside of their discipline, in addition to required technical skills. A collaborative multi-disciplinary service learning project referred to as Ed+gineering was implemented in a 100-level mechanical engineering course. In this collaboration, mechanical engineering students, primarily in the second semester of their freshman year or first semester of their second year, worked over the course of a semester with education students taking a foundations course to develop and deliver engineering lessons to fourth or fifth graders. Students in comparison engineering classes worked on a team project focused on experimental design for a small satellite system. The purpose of this study was to determine if participating in the Ed+gineering collaboration had a positive effect on teamwork effectiveness and satisfaction when compared to the comparison class. In both team projects, the five dimensions of the Comprehensive Assessment of Team Member Effectiveness (CATME) system were used as a quantitative assessment. The five dimensions of CATME Behaviorally Anchored Ratings Scale (BARS) (contribution to the team’s work, interacting with teammates, keeping the team on track, expecting quality, and having relevant Knowledge, Skills, and Abilities - KSAs) were measured. Additionally, within the CATME platform team satisfaction, team interdependence and team cohesiveness were measured. ANCOVA analysis was used to assess the quantitative data from CATME. Preliminary results suggest that students in the treatment classes had higher team member effectiveness and overall satisfaction scores than students in the comparison classes. Qualitative data from reflections written at the completion of the aforementioned projects were used to explore these results. 
    more » « less
  5. The purpose of this research paper is to explore whether participation in an interdisciplinary collaboration program partnering Preservice Teachers (PST) and Undergraduate Engineering Students (UES) results in an increase in teamwork effectiveness. The interdisciplinary collaboration was designed as a service-learning project within existing undergraduate programs that included the development and delivery of engineering content to a K-12 audience. The collaborations were integrated into existing courses in two colleges, engineering and education. The Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness (CATME) was used midway and at the end of the project to evaluate teamwork effectiveness. Results of the analysis indicated that both PST and UES experienced a significant increase in team-member effectiveness over the course of the project in four of the five factors: interacting with team members, keeping the team on track, expecting quality, and having relevant knowledge, skills and abilities. A noticeable positive increase in student attitudes towards the task was also observed between the midway and the end of the project. Analysis also suggests that the gain in the teamwork effectiveness did not differ across majors, with both UES and PST showing similar gains. Findings from this study provide some preliminary evidence that an innovative interdisciplinary service learning experience partnering engineering and education students, had a positive impact on their teamwork skills. 
    more » « less