skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: LTE Spectrum Sharing Research Testbed: Integrated Hardware, Software, Network and Data
This paper presents Virginia Tech’s wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds.  more » « less
Award ID(s):
1642873
NSF-PAR ID:
10042399
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM WiNTECH 2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mission-critical wireless networks are being upgraded to 4G long-term evolution (LTE). As opposed to capacity, these networks require very high reliability and security as well as easy deployment and operation in the field. Wireless communication systems have been vulnerable to jamming, spoofing and other radio frequency attacks since the early days of analog systems. Although wireless systems have evolved, important security and reliability concerns still exist. This paper presents our methodology and results for testing 4G LTE operating in harsh signaling environments. We use software-defined radio technology and open-source software to develop a fully configurable protocol-aware interference waveform. We define several test cases that target the entire LTE signal or part of it to evaluate the performance of a mission-critical production LTE system. Our experimental results show that synchronization signal interference in LTE causes significant throughput degradation at low interference power. By dynamically evaluating the performance measurement counters, the k-nearest neighbor classification method can detect the specific RF signaling attack to aid in effective mitigation. 
    more » « less
  2. Radio frequency (RF) spectrum is transitioning from exclusive licensed to shared use in many bands. We demonstrate our design and implementation of a spectrum access system (SAS), which allows centrally coordinated access to shared spectrum. It shows how resources are requested by the radios and how the SAS tracks spectrum occupation and grants or denies access to requesting nodes. The open-source software framework is readily installed on Virginia Tech’s cognitive radio network (CORNET) testbed, a remotely-accessible wireless research platform of large scale. 
    more » « less
  3. The long-term evolution (LTE) has spread around the globe for deploying 4G cellular networks for com-mercial use. These days, it is gaining interest for new applica-tions where mobile broadband services can be of benefit to so-ciety. Whereas the basic concepts of LTE are well understood, its long-term evolution has just started. New areas of R&D look into operation in unlicensed and shared bands, where new ver-sions of LTE need to coexist with other communication systems and radars. Virginia Tech has developed an LTE testbed with unique features to spur LTE research and education. This pa-per introduces Virginia Tech’s LTE testbed, its main features and components, access and configuration mechanisms, and some of the research thrusts that it enables. It is unique in sev-eral aspects, including the extensive use of software-defined radio technology, the combination of industry-grade hardware and software-based systems, and the remote access feature for user-defined configurations of experiments and radio frequency paths. 
    more » « less
  4. null (Ed.)
    ABSTRACT In order to support experimentation with full-duplex (FD) wireless, we recently integrated two generations of FD radios in the open-access ORBIT and COSMOS testbeds. First, we integrated a customized 1st generation (Gen-1) narrowband FD radio in the indoor ORBIT testbed. Then, we integrated two 2 nd generation (Gen-2) wideband FD radios in the city-scale PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a remotely accessible compute node. The Gen-1/Gen-2 RF SI canceller box includes an RF canceller printed circuit board (PCB) which emulates a customized integrated circuit (IC) RF canceller implementation. The amplitude- and phase-based Gen-1 narrowband RF canceller achieves 40 dB RF SIC across 5 MHz. The Gen-2 wideband canceller is based on the technique of frequency-domain equalization (FDE) and achieves 50 dB RF SI cancellation (SIC) across 20 MHz. In this paper, we present the design and testbed integration of the two generations of FD radios. We then present example experiments that can be remotely run and modified by experimenters. Finally, we discuss future improvements and potential FD wireless experiments that can be supported by these open-access FD radios integrated in the COSMOS testbed. 
    more » « less
  5. The main resource for providing wireless services is radio frequency (RF) spectrum. In order to explore new uses of spectrum shared among radio systems and services, field data needs to be collected. In this paper we design a testbed that can generate different 5G New Radio (NR) downlink transmission frames using the MATLAB 5G Toolbox, software-defined radio (SDR) hardware and GNU Radio Companion. This system will be used as a part of a testbed to study the RF interference caused by 5G transmissions to remote sensing receivers and evaluate different mechanisms for co-channel coexistence. 
    more » « less