skip to main content


Title: β‐Functionalized Push–Pull opp ‐Dibenzoporphyrins as Sensitizers for Dye‐Sensitized Solar Cells
Abstract

A novel class of β‐functionalized push–pull zincopp‐dibenzoporphyrins were designed, synthesized, and utilized as sensitizers for dye‐sensitized solar cells. Spectral, electrochemical, and computational studies were systematically performed to evaluate their spectral coverage, redox behavior, and electronic structures. These porphyrins displayed much broader spectral coverage and more facile oxidation upon extension of the π conjugation. Free‐energy calculations and femtosecond transient absorption studies (charge injection rate in the range of 1011 s−1) suggested efficient charge injection from the excited singlet state of the porphyrin to the conduction band of TiO2. The power conversion efficiency (η) ofYH3bearing acrylic acid linkers (η=5.9 %) was close to that of the best ruthenium dye N719 (η=7.4 %) under similar conditions. The superior photovoltaic performance ofYH3was attributed to its higher light‐harvesting ability and more favorable electron injection and collection, as supported by electrochemical impedance spectral studies. This work demonstrates the exceptional potential of benzoporphyrins as sensitizers for dye‐sensitized solar cells.

 
more » « less
NSF-PAR ID:
10042622
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – An Asian Journal
Volume:
12
Issue:
20
ISSN:
1861-4728
Page Range / eLocation ID:
p. 2749-2762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two wide‐band‐capturing donor‐acceptor conjugates featuring bis‐styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the1PDI* to BODIPY, and a subsequent electron transfer from the1BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground‐state interactions between the donor and acceptor entities. Steady‐state fluorescence and excitation spectral recordings provided evidence of singlet‐singlet energy transfer in these dyads, and quenched fluorescence of bis‐styrylBODIPY emission in the dyads suggested additional photo‐events. The facile oxidation of bis‐styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1and S2states, derived from time‐dependent DFT calculations, supported excited charge transfer in these dyads. Spectro‐electrochemical studies on one‐electron‐oxidized and one‐electron‐reduced dyads and the monomeric precursor compounds were also performed in a thin‐layer optical cell under corresponding applied potentials. From this study, both bis‐styrylBODIPY⋅+and PDI⋅could be spectrally characterizes and were subsequently used in characterizing the electron‐transfer products. Finally, pump–probe spectral studies were performed in dichlorobenzene under selective PDI and bis‐styrylBODIPY excitation to secure energy and electron‐transfer evidence. The measured rate constants for energy transfer,kENT, were in the range of 1011 s−1, while the electron transfer rate constants,kET, were in the range of 1010 s−1, thus highlighting their potential use in solar energy harvesting and optoelectronic applications.

     
    more » « less
  2. Abstract

    BF2‐chelated dipyrromethene, BODIPY, was functionalized to carry two styryl crown ether tails and a secondary electron donor at themesoposition. By using a “two‐point” self‐assembly strategy, a bis‐alkylammonium‐functionalized fullerene (C60) was allowed to self‐assemble the crown ether voids of BODIPY to obtain multimodular donor–acceptor conjugates. As a consequence of the two‐point binding, the 1:1 stoichiometric complexes formed yielded complexes of higher stability in which fluorescence of BODIPY was found to be quenched; this suggested the occurrence of excited‐state processes. The geometry and electronic structure of the self‐assembled complexes were derived from B3LYP/3‐21G(*) methods in which no steric constraints between the entities was observed. An energy‐level diagram was established by using spectral, electrochemical, and computational results to help understand the mechanistic details of excited‐state processes originating from1bis‐styryl‐BODIPY*. Femtosecond transient absorbance studies were indicative of the formation of an exciplex state prior to the charge‐separation process to yield a bis‐styryl‐BODIPY.+–C60.radical ion pair. The time constants for charge separation were generally lower than charge‐recombination processes. The present studies bring out the importance of multimode binding strategies to obtain stable self‐assembled donor–acceptor conjugates capable of undergoing photoinduced charge separation needed in artificial photosynthetic applications.

     
    more » « less
  3. Abstract

    The development of high voltage solar cells is an attractive way to use sunlight for solar‐to‐fuel devices, multijunction solar‐to‐electric systems, and to power limited‐area consumer electronics. By designing a low‐oxidation‐potential organic dye (RR9)/redox shuttle (Fe(bpy)33+/2+) pair for dye‐sensitized solar‐cell (DSSC) devices, the highest single device photovoltage (1.42 V) has been realized for a DSSC not relying on doped TiO2. Additionally, Fe(bpy)33+/2+offers a robust, readily tunable ligand platform for redox potential tuning.RR9can be regenerated with a low driving force (190 mV), and by utilizing theRR9/Fe(bpy)33+/2+redox shuttle pair in a subcell for a sequential series multijunction (SSM)‐DSSC system, one of the highest known three subcell photovoltage was attained for any solar‐cell technology (3.34 V, >1.0 V per subcell).

     
    more » « less
  4. Abstract

    Sequential series multijunction dye‐sensitized solar cells (SSM‐DSCs) can power solar‐to‐fuel processes with a single illuminated area device. Dye selection and strategies limiting photon losses are critical in SSM‐DSC devices for higher performance systems. Herein, an efficient and readily applicable spin coating protocol on glass surfaces with an antireflective fluoropolymer (CYTOP) is applied to an SSM‐DSC architecture. Combining CYTOP with the use of an immersion oil between glass spacers in a three subcell SSM‐DSC with judiciously selected TiO2photoanode sensitizers and thicknesses, an overall power conversion efficiency (PCE) of 10.1% is obtained with an output of 2.3 V. Without external bias, this SSM‐DSC configuration shows an impressive overall solar‐to‐fuel conversion efficiency of 6% when powering IrO2and Au2O3electrocatalysts for CO2and H2O to CO and H2conversion in aqueous solution. The role of CYTOP, immersion oil, sensitizer selection, and film thickness on SSM‐DSC devices is discussed along with the stability of this system.

     
    more » « less
  5. Abstract

    The mechanism of the intermolecular hydroamination of 3‐methylbuta‐1,2‐diene (1) withN‐methylaniline (2) catalyzed by (IPr)AuOTf has been studied by employing a combination of kinetic analysis, deuterium labelling studies, and in situ spectral analysis of catalytically active mixtures. The results of these and additional experiments are consistent with a mechanism for hydroamination involving reversible, endergonic displacement ofN‐methylaniline from [(IPr)Au(NHMePh)]+(4) by allene to form the cationic gold π‐C1,C2‐allene complex [(IPr)Au(η2‐H2C=C=CMe2)]+(I), which is in rapid, endergonic equilibrium with the regioisomeric π‐C2,C3‐allene complex [(IPr)Au(η2‐Me2C=C=CH2)]+(I′). Rapid and reversible outer‐sphere addition of2to the terminal allene carbon atom ofI′to form gold vinyl complex (IPr)Au[C(=CH2)CMe2NMePh] (II) is superimposed on the slower addition of2to the terminal allene carbon atom ofIto form gold vinyl complex (IPr)Au[C(=CMe2)CH2NMePh] (III). Selective protodeauration ofIIIreleasesN‐methyl‐N‐(3‐methylbut‐2‐en‐1‐yl)aniline (3 a) with regeneration of4. At high conversion, gold vinyl complexIIis competitively trapped by an (IPr)Au+fragment to form the cationic bis(gold) vinyl complex {[(IPr)Au]2[C(=CH2)CMe2NMePh]}+(6).

     
    more » « less