skip to main content


Title: Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope: ECOSYSTEM APPROACH TO MODEL PERMAFROST
Award ID(s):
1636476
NSF-PAR ID:
10042920
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
122
Issue:
1
ISSN:
2169-9003
Page Range / eLocation ID:
50 to 75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The stability of permafrost is of fundamental importance to socio-economic well-being and ecological services, involving broad impacts to hydrological cycling, global budgets of greenhouse gases and infrastructure safety. This study presents a biophysical permafrost zonation map that uses a rule-based geographic information system (GIS) model integrating global climate and ecological datasets to classify and map permafrost regions (totaling 19.76 × 10 6 km 2 , excluding glaciers and lakes) in the Northern Hemisphere into five types: climate-driven (CD) (19% of area), CD/ecosystem-modified (41%), CD/ecosystem protected (3%), ecosystem-driven (29%), and ecosystem-protected (8%). Overall, 81% of the permafrost regions in the Northern Hemisphere are modified, driven, or protected by ecosystems, indicating the dominant role of ecosystems in permafrost stability in the Northern Hemisphere. Permafrost driven solely by climate occupies 19% of permafrost regions, mainly in High Arctic and high mountains areas, such as the Qinghai–Tibet Plateau. This highlights the importance of reducing ecosystem disturbances (natural and human activity) to help slow permafrost degradation and lower the related risks from a warming climate. 
    more » « less