Humans routinely extract important information from images and videos, relying on their gaze. In contrast, computational systems still have difficulty annotating important visual information in a human-like manner, in part because human gaze is often not included in the modeling process. Human input is also particularly relevant for processing and interpreting affective visual information. To address this challenge, we captured human gaze, spoken language, and facial expressions simultaneously in an experiment with visual stimuli characterized by subjective and affective content. Observers described the content of complex emotional images and videos depicting positive and negative scenarios and also their feelings about the imagery being viewed. We explore patterns of these modalities, for example by comparing the affective nature of participant-elicited linguistic tokens with image valence. Additionally, we expand a framework for generating automatic alignments between the gaze and spoken language modalities for visual annotation of images. Multimodal alignment is challenging due to their varying temporal offset. We explore alignment robustness when images have affective content and whether image valence influences alignment results. We also study if word frequency-based filtering impacts results, with both the unfiltered and filtered scenarios performing better than baseline comparisons, and with filtering resulting in a substantial decrease in alignment error rate. We provide visualizations of the resulting annotations from multimodal alignment. This work has implications for areas such as image understanding, media accessibility, and multimodal data fusion.
more »
« less
Using Co-Captured Face, Gaze, and Verbal Reactions to Images of Varying Emotional Content for Analysis and Semantic Alignment
Analyzing different modalities of expression can provide insights into the ways that humans interpret, label, and react to images. Such insights have the potential not only to advance our understanding of how humans coordinate these expressive modalities but also to enhance existing methodologies for common AI tasks such as image annotation and classification. We conducted an experiment that co-captured the facial expressions, eye movements, and spoken language data that observers produce while examining images of varying emotional content and responding to description-oriented vs. affect-oriented questions about those images. We analyzed the facial expressions produced by the observers in order to determine the connection between those expressions and an image's emotional content. We also explored the relationship between the valence of an image and the verbal responses to that image, and how that relationship relates to the nature of the prompt, using low-level lexical features and more complex affective features extracted from the observers' verbal responses. Finally, in order to integrate this multimodal data, we extended an existing bitext alignment framework to create meaningful pairings between narrated observations about images and the image regions indicated by eye movement data. The resulting annotations of image regions with words from observers' responses demonstrate the potential of bitext alignment for multimodal data integration and, from an application perspective, for annotation of open-domain images. In addition, we found that while responses to affect-oriented questions appear useful for image understanding, their holistic nature seems less helpful for image region annotation.
more »
« less
- Award ID(s):
- 1559889
- PAR ID:
- 10042952
- Date Published:
- Journal Name:
- The AAAI-17 Workshop on Human-Aware Artificial Intelligence
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Effective interactions between humans and robots are vital to achieving shared tasks in collaborative processes. Robots can utilize diverse communication channels to interact with humans, such as hearing, speech, sight, touch, and learning. Our focus, amidst the various means of interactions between humans and robots, is on three emerging frontiers that significantly impact the future directions of human–robot interaction (HRI): (i) human–robot collaboration inspired by human–human collaboration, (ii) brain-computer interfaces, and (iii) emotional intelligent perception. First, we explore advanced techniques for human–robot collaboration, covering a range of methods from compliance and performance-based approaches to synergistic and learning-based strategies, including learning from demonstration, active learning, and learning from complex tasks. Then, we examine innovative uses of brain-computer interfaces for enhancing HRI, with a focus on applications in rehabilitation, communication, brain state and emotion recognition. Finally, we investigate the emotional intelligence in robotics, focusing on translating human emotions to robots via facial expressions, body gestures, and eye-tracking for fluid, natural interactions. Recent developments in these emerging frontiers and their impact on HRI were detailed and discussed. We highlight contemporary trends and emerging advancements in the field. Ultimately, this paper underscores the necessity of a multimodal approach in developing systems capable of adaptive behavior and effective interaction between humans and robots, thus offering a thorough understanding of the diverse modalities essential for maximizing the potential of HRI.more » « less
-
Abstract Most of the research in the field of affective computing has focused on detecting and classifying human emotions through electroencephalogram (EEG) or facial expressions. Designing multimedia content to evoke certain emotions has been largely motivated by manual rating provided by users. Here we present insights from the correlation of affective features between three modalities namely, affective multimedia content, EEG, and facial expressions. Interestingly, low-level Audio-visual features such as contrast and homogeneity of the video and tone of the audio in the movie clips are most correlated with changes in facial expressions and EEG. We also detect the regions associated with the human face and the brain (in addition to the EEG frequency bands) that are most representative of affective responses. The computational modeling between the three modalities showed a high correlation between features from these regions and user-reported affective labels. Finally, the correlation between different layers of convolutional neural networks with EEG and Face images as input provides insights into human affection. Together, these findings will assist in (1) designing more effective multimedia contents to engage or influence the viewers, (2) understanding the brain/body bio-markers of affection, and (3) developing newer brain-computer interfaces as well as facial-expression-based algorithms to read emotional responses of the viewers.more » « less
-
This study explores the affective responses and newsworthiness perceptions of generative AI for visual journalism. While generative AI offers advantages for newsrooms in terms of producing unique images and cutting costs, the potential misuse of AI-generated news images is a cause for concern. For our study, we designed a 3-part news image codebook for affect-labeling news images based on journalism ethics and photography guidelines. We collected 200 news headlines and images retrieved from a variety of U.S. news sources on the topics of gun violence and climate change, generated corresponding news images from DALL-E 2 and asked annotators their emotional responses to the human-selected and AI-generated news images following the codebook. We also examined the impact of modality on emotions by measuring the effects of visual and textual modalities on emotional responses. The findings of this study provide insights into the quality and emotional impact of generative news images produced by humans and AI. Further, results of this work can be useful in developing technical guidelines as well as policy measures for the ethical use of generative AI systems in journalistic production. The codebook, images and annotations are made publicly available to facilitate future research in affective computing, specifically tailored to civic and public-interest journalism.more » « less
-
The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues.more » « less