skip to main content


Title: Exploring the Social Influence of Virtual Humans Unintentionally Conveying Conflicting Emotions
The expression of human emotion is integral to social interaction, and in virtual reality it is increasingly common to develop virtual avatars that attempt to convey emotions by mimicking these visual and aural cues, i.e. the facial and vocal expressions. However, errors in (or the absence of) facial tracking can result in the rendering of incorrect facial expressions on these virtual avatars. For example, a virtual avatar may speak with a happy or unhappy vocal inflection while their facial expression remains otherwise neutral. In circumstances where there is conflict between the avatar's facial and vocal expressions, it is possible that users will incorrectly interpret the avatar's emotion, which may have unintended consequences in terms of social influence or in terms of the outcome of the interaction. In this paper, we present a human-subjects study (N = 22) aimed at understanding the impact of conflicting facial and vocal emotional expressions. Specifically we explored three levels of emotional valence (unhappy, neutral, and happy) expressed in both visual (facial) and aural (vocal) forms. We also investigate three levels of head scales (down-scaled, accurate, and up-scaled) to evaluate whether head scale affects user interpretation of the conveyed emotion. We find significant effects of different multimodal expressions on happiness and trust perception, while no significant effect was observed for head scales. Evidence from our results suggest that facial expressions have a stronger impact than vocal expressions. Additionally, as the difference between the two expressions increase, the less predictable the multimodal expression becomes. For example, for the happy-looking and happy-sounding multimodal expression, we expect and see high happiness rating and high trust, however if one of the two expressions change, this mismatch makes the expression less predictable. We discuss the relationships, implications, and guidelines for social applications that aim to leverage multimodal social cues.  more » « less
Award ID(s):
1800961
NSF-PAR ID:
10442473
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)
Page Range / eLocation ID:
571 to 580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The enhancement hypothesis suggests that deaf individuals are more vigilant to visual emotional cues than hearing individuals. The present eye-tracking study examined ambient–focal visual attention when encoding affect from dynamically changing emotional facial expressions. Deaf (n = 17) and hearing (n = 17) individuals watched emotional facial expressions that in 10-s animations morphed from a neutral expression to one of happiness, sadness, or anger. The task was to recognize emotion as quickly as possible. Deaf participants tended to be faster than hearing participants in affect recognition, but the groups did not differ in accuracy. In general, happy faces were more accurately and more quickly recognized than faces expressing anger or sadness. Both groups demonstrated longer average fixation duration when recognizing happiness in comparison to anger and sadness. Deaf individuals directed their first fixations less often to the mouth region than the hearing group. During the last stages of emotion recognition, deaf participants exhibited more focal viewing of happy faces than negative faces. This pattern was not observed among hearing individuals. The analysis of visual gaze dynamics, switching between ambient and focal attention, was useful in studying the depth of cognitive processing of emotional information among deaf and hearing individuals. 
    more » « less
  2. The overall goal of our research is to develop a system of intelligent multimodal affective pedagogical agents that are effective for different types of learners (Adamo et al., 2021). While most of the research on pedagogical agents tends to focus on the cognitive aspects of online learning and instruction, this project explores the less-studied role of affective (or emotional) factors. We aim to design believable animated agents that can convey realistic, natural emotions through speech, facial expressions, and body gestures and that can react to the students’ detected emotional states with emotional intelligence. Within the context of this goal, the specific objective of the work reported in the paper was to examine the extent to which the agents’ facial micro-expressions affect students’ perception of the agents’ emotions and their naturalness. Micro-expressions are very brief facial expressions that occur when a person either deliberately or unconsciously conceals an emotion being felt (Ekman &Friesen, 1969). Our assumption is that if the animated agents display facial micro expressions in addition to macro expressions, they will convey higher expressive richness and naturalness to the viewer, as “the agents can possess two emotional streams, one based on interaction with the viewer and the other based on their own internal state, or situation” (Queiroz et al. 2014, p.2).The work reported in the paper involved two studies with human subjects. The objectives of the first study were to examine whether people can recognize micro-expressions (in isolation) in animated agents, and whether there are differences in recognition based on the agent’s visual style (e.g., stylized versus realistic). The objectives of the second study were to investigate whether people can recognize the animated agents’ micro-expressions when integrated with macro-expressions, the extent to which the presence of micro + macro-expressions affect the perceived expressivity and naturalness of the animated agents, the extent to which exaggerating the micro expressions, e.g. increasing the amplitude of the animated facial displacements affects emotion recognition and perceived agent naturalness and emotional expressivity, and whether there are differences based on the agent’s design characteristics. In the first study, 15 participants watched eight micro-expression animations representing four different emotions (happy, sad, fear, surprised). Four animations featured a stylized agent and four a realistic agent. For each animation, subjects were asked to identify the agent’s emotion conveyed by the micro-expression. In the second study, 234 participants watched three sets of eight animation clips (24 clips in total, 12 clips per agent). Four animations for each agent featured the character performing macro-expressions only, four animations for each agent featured the character performing macro- + micro-expressions without exaggeration, and four animations for each agent featured the agent performing macro + micro-expressions with exaggeration. Participants were asked to recognize the true emotion of the agent and rate the emotional expressivity ad naturalness of the agent in each clip using a 5-point Likert scale. We have collected all the data and completed the statistical analysis. Findings and discussion, implications for research and practice, and suggestions for future work will be reported in the full paper. ReferencesAdamo N., Benes, B., Mayer, R., Lei, X., Meyer, Z., &Lawson, A. (2021). Multimodal Affective Pedagogical Agents for Different Types of Learners. In: Russo D., Ahram T., Karwowski W., Di Bucchianico G., Taiar R. (eds) Intelligent Human Systems Integration 2021. IHSI 2021. Advances in Intelligent Systems and Computing, 1322. Springer, Cham. https://doi.org/10.1007/978-3-030-68017-6_33Ekman, P., &Friesen, W. V. (1969, February). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88–106. https://doi.org/10.1080/00332747.1969.11023575 Queiroz, R. B., Musse, S. R., &Badler, N. I. (2014). Investigating Macroexpressions and Microexpressions in Computer Graphics Animated Faces. Presence, 23(2), 191-208. http://dx.doi.org/10.1162/

     
    more » « less
  3. Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues. 
    more » « less
  4. This paper demonstrates the utility of ambient-focal attention and pupil dilation dynamics to describe visual processing of emotional facial expressions. Pupil dilation and focal eye movements reflect deeper cognitive processing and thus shed more light on the dy- namics of emotional expression recognition. Socially anxious in- dividuals (N = 24) and non-anxious controls (N = 24) were asked to recognize emotional facial expressions that gradually morphed from a neutral expression to one of happiness, sadness, or anger in 10-sec animations. Anxious cohorts exhibited more ambient face scanning than their non-anxious counterparts. We observed a positive relationship between focal fixations and pupil dilation, indi- cating deeper processing of viewed faces, but only by non-anxious participants, and only during the last phase of emotion recognition. Group differences in the dynamics of ambient-focal attention sup- port the hypothesis of vigilance to emotional expression processing by socially anxious individuals. We discuss the results by referring to current literature on cognitive psychopathology. 
    more » « less
  5. Abstract

    Faces are among the most important visual stimuli that humans perceive in everyday life. While extensive literature has examined emotional processing and social evaluations of faces, most studies have examined either topic using unimodal approaches. In this review, we promote the use of multimodal cognitive neuroscience approaches to study these processes, using two lines of research as examples: ambiguity in facial expressions of emotion and social trait judgment of faces. In the first set of studies, we identified an event‐related potential that signals emotion ambiguity using electroencephalography and we found convergent neural responses to emotion ambiguity using functional neuroimaging and single‐neuron recordings. In the second set of studies, we discuss how different neuroimaging and personality‐dimensional approaches together provide new insights into social trait judgments of faces. In both sets of studies, we provide an in‐depth comparison between neurotypicals and people with autism spectrum disorder. We offer a computational account for the behavioral and neural markers of the different facial processing between the two groups. Finally, we suggest new practices for studying the emotional processing and social evaluations of faces. All data discussed in the case studies of this review are publicly available.

     
    more » « less