skip to main content

Title: Non-seagrass carbon contributions to seagrass sediment blue carbon: Non-seagrass blue carbon
 ;  ;  ;  ;  
Publication Date:
Journal Name:
Limnology and Oceanography
Page Range or eLocation-ID:
S3 to S18
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Anthropogenic increases in global temperatures and nutrient loads are expected to reduce juvenile blue crab (Callinectes sapidus) survival in the Chesapeake Bay. These factors change habitat composition which can affect juvenile invertebrates and fishes that are dependent on these habitats. Eelgrass (Zostera marina) is declining due to rising water temperatures and increased nutrient loading, while widgeon grass (Ruppia maritima) can tolerate higher temperatures. An indoor mesocosm experiment was designed to test the suitability of Zostera and Ruppia as protective nursery habitats compared to sand. Artificial seagrass plots were placed in flow-through tanks. Juvenile blue crabs were tethered, and adult blue crabs and striped burrfish were introduced as predators in order to estimate juvenile crab survival in different substrates. Survival analysis revealed that Zostera provides more protection for juvenile crabs than sand. There was no significant difference between Ruppia and sand, and between Zostera and Ruppia in providing juvenile protection. This suggests juvenile survival may decrease in the future with Zostera loss and that stricter restrictions on the blue crab fishery in the Chesapeake Bay and mid-Atlantic region would be required to maintain healthy crab populations.
  2. Seagrass meadows are twice as effective as forests at capturing and storing carbon, but human activities have caused them to gradually disappear over the last few decades. We take a nature-centered design approach on contextual inquiry and collaborative designs methods to consolidate knowledge from marine and material sciences to industrial design. This pictorial documents a dialogue between designers and scientists to co-create an ecological intervention using digital fabrication for manufacturing morphing ceramics for seagrass meadow restoration.
  3. Worldwide, seagrass meadows accumulate significant stocks of organic carbon (C), known as “blue” carbon, which can remain buried for decades to centuries. However, when seagrass meadows are disturbed, these C stocks may be remineralized, leading to significant CO 2 emissions. Increasing ocean temperatures, and increasing frequency and severity of heat waves, threaten seagrass meadows and their sediment blue C. To date, no study has directly measured the impact of seagrass declines from high temperatures on sediment C stocks. Here, we use a long-term record of sediment C stocks from a 7-km 2 , restored eelgrass ( Zostera marina ) meadow to show that seagrass dieback following a single marine heat wave (MHW) led to significant losses of sediment C. Patterns of sediment C loss and re-accumulation lagged patterns of seagrass recovery. Sediment C losses were concentrated within the central area of the meadow, where sites experienced extreme shoot density declines of 90% during the MHW and net losses of 20% of sediment C over the following 3 years. However, this effect was not uniform; outer meadow sites showed little evidence of shoot declines during the MHW and had net increases of 60% of sediment C over the following 3 years.more »Overall, sites with higher seagrass recovery maintained 1.7x as much C compared to sites with lower recovery. Our study demonstrates that while seagrass blue C is vulnerable to MHWs, localization of seagrass loss can prevent meadow-wide C losses. Long-term (decadal and beyond) stability of seagrass blue C depends on seagrass resilience to short-term disturbance events.« less