skip to main content

Title: JUVENILE BLUE CRAB (CALLINECTES SAPIDUS) SURVIVAL IN SIMULATED SEAGRASS HABITATS (ZOSTERA MARINA AND RUPPIA MARITIMA)
Anthropogenic increases in global temperatures and nutrient loads are expected to reduce juvenile blue crab (Callinectes sapidus) survival in the Chesapeake Bay. These factors change habitat composition which can affect juvenile invertebrates and fishes that are dependent on these habitats. Eelgrass (Zostera marina) is declining due to rising water temperatures and increased nutrient loading, while widgeon grass (Ruppia maritima) can tolerate higher temperatures. An indoor mesocosm experiment was designed to test the suitability of Zostera and Ruppia as protective nursery habitats compared to sand. Artificial seagrass plots were placed in flow-through tanks. Juvenile blue crabs were tethered, and adult blue crabs and striped burrfish were introduced as predators in order to estimate juvenile crab survival in different substrates. Survival analysis revealed that Zostera provides more protection for juvenile crabs than sand. There was no significant difference between Ruppia and sand, and between Zostera and Ruppia in providing juvenile protection. This suggests juvenile survival may decrease in the future with Zostera loss and that stricter restrictions on the blue crab fishery in the Chesapeake Bay and mid-Atlantic region would be required to maintain healthy crab populations.
Authors:
Award ID(s):
1062882
Publication Date:
NSF-PAR ID:
10051369
Journal Name:
Honor's Thesis: Ecology and Evolutionary Biology, University of Colorado at Boulder
Sponsoring Org:
National Science Foundation
More Like this
  1. Blue crabs Callinectes sapidus have expanded their geographic range northward in the NW Atlantic with possible trophodynamic effects on benthic communities. In this study, we examined the blue crab’s diet in 2 southern New England tidal rivers (USA) and expounded on their predator-prey interaction with juvenile winter flounder Pseudopleuronectes americanus . Blue crabs (8-185 mm carapace width [CW]; n = 1835) were collected from the Seekonk River, Rhode Island, and Taunton River, Massachusetts, between May and August 2012 to 2016, and their feeding habits were assessed via stomach content, stable isotope, and molecular genetic analyses. Blue crabs were found to be generalist carnivores-omnivores with diets varying throughout ontogeny, yet shifts in prey composition had no effect on size-based nitrogen isotope signatures and trophic position (3.50 ± 0.35, mean ± SD). Carbon isotope values indicated that detritus-macroalgae were the dominant carbon source to the food web, with additional contributions from terrestrially derived organic matter and phytoplankton in oligohaline and polyhaline waters, respectively. The main prey of blue crabs ≤49 mm CW were amphipods, shrimp, and unidentified crustaceans, and larger conspecifics fed on bivalves, crabs, and fish. Winter flounder remains, e.g. sagittal otoliths, were identified in the diet of 2.5% of field-collectedmore »blue crabs, whereas PCR-based assays detected winter flounder DNA in 17.7% of crab stomachs. Blue crabs 23 to 160 mm CW preyed on winter flounder ranging from 26 to 66 mm total length, with occurrences of predation most closely associated with increases in crab size. Blue crab predation on winter flounder also varied spatially in the rivers, reflecting site-specific differences in flounder densities, abundances of other preferred prey, and dissolved oxygen concentrations that altered predator-prey dynamics. Lastly, the current predatory impact of blue crabs on juvenile winter flounder is nearly equivalent to other portunid crab species. Anticipated temperature-mediated increases in blue crab densities at northern latitudes, however, will intensify the predator-induced mortality of winter flounder and likely hinder their recovery in southern New England.« less
  2. Abstract

    Coastal habitats are experiencing decreases in seawater pH and increases in temperature due to anthropogenic climate change. The Caribbean king crab,Maguimithrax spinosissimus, plays a vital role on Western Atlantic reefs by grazing macroalgae that competes for space with coral recruits. Therefore, identifying its tolerance to anthropogenic stressors is critically needed if this species is to be considered as a potential restoration management strategy in coral reef environments. We examined the effects of temperature (control: 28 °C and elevated: 31 °C) and pH (control: 8.0 and reduced pH: 7.7) on the king crab’s larval and early juvenile survival, molt-stage duration, and morphology in a fully crossed laboratory experiment. Survival to the megalopal stage was reduced (13.5% lower) in the combined reduced pH and elevated temperature treatment relative to the control. First-stage (J1) juveniles delayed molting by 1.5 days in the reduced pH treatment, while second-stage (J2) crabs molted 3 days earlier when exposed to elevated temperature. Juvenile morphology did not differ among treatments. These results suggests that juvenile king crabs are tolerant to changes associated with climate change. Given the important role of the king crab as a grazer of macroalgae, its tolerance to climate stressors suggests that it could benefit restoration efforts aimedmore »at making coral reefs more resilient to increasingly warm and acidic oceans into the future.

    « less
  3. Many marine species have been shown to be threatened by both ocean acidification and ocean warming which are reducing survival, altering behavior, and posing limits on physiology, especially during earlier life stages. The commercially important Florida stone crab, Menippe mercenaria , is one species that is affected by reduced seawater pH and elevated seawater temperatures. In this study, we determined the impacts of reduced pH and elevated temperature on the distribution of the stone crab larvae along the West Florida Shelf. To understand the dispersion of the larvae, we coupled the multi-scale ocean model SLIM with a larval dispersal model. We then conducted a connectivity study and evaluated the impacts of climate stressors by looking at four different scenarios which included models that represented the dispersion of stone crab larvae under: 1) present day conditions as modelled by SLIM for the temperature and NEMO-PISCES for the pH, 2) SSP1-2.6 scenario (-0.037 reduction in pH and +0.5°C compared to present-day conditions), 3) SSP2-4.5 scenario(-0.15 reduction in pH and +1.5°C) and 4) SSP5-8.5 scenario (-0.375 reduction in pH and +3.5°C). Our results show a clear impact of these climate change stressors on larval dispersal and on the subsequent stone crab distribution. Ourmore »results indicate that future climate change could result in stone crabs moving north or into deeper waters. We also observed an increase in the number of larvae settling in deeper waters (defined as the non-fishing zone in this study with depths exceeding 30 m) that are not typically part of the commercial fishing zone. The distance travelled by larvae, however, is likely to decrease, resulting in an increase of self-recruitment and decrease of the size of the sub-populations. A shift of the spawning period, to earlier in the spring, is also likely to occur. Our results suggest that habitats in the non-fishing zone cannot serve as a significant source of larvae for the habitats in the fishing zone (defined as water depth< 30 m) since there is very little exchange (< 5% of all exchanges) between the two zones. These results indicate that the stone crab populations in Florida may be susceptible to community fragmentation and that the management of the fishery should consider the potential impacts of future climate change scenarios.« less
  4. This research focuses on the efficiency of recommended heavy use area protection (HUAP) pads installed in poultry houses utilizing the Choptank River, a tributary of the Chesapeake Bay. The Chesapeake Bay watershed is severely affected by crop agriculture and poultry feeding operations. Water quality degradation along with scarcity of water is a significant concern in this area, suggesting a need for changes in both environmental and groundwater management practices. Our objective in this study was to compare the efficiency of HUAP in reducing litter spillage and nutrient runoff between two poultry houses, one of which was constructed in 2005 and the other in 2009. The poultry house constructed in 2005 did not have HUAP pads initially; they were built in 2006. The poultry house built in 2009 had the pads from the starting point. We collected soil and water samples each month and analyzed them for pH, electrical conductivity (EC), nitrate, nitrite, total nitrogen, phosphate, and other soil properties throughout the year. The pH of soil and water samples was in the range of 6.8–8.0 and 6.5–7.2, respectively. We collected six water samples in total in the ditch, from points at retention ponds near the farm ditch to sites inmore »wooded areas on the farm. Water sample B (where ditch water meets retention pond water from the poultry farm) had the highest EC value and nitrate, nitrite, and total nitrogen concentrations compared with other water samples. The subsequent water samples downstream had reduced loads of nutrients. The study results suggest that there was a minimum carryover of nutrients from soil into the runoff water, storm ditches, and adjacent stream. There was also a minimal effect of house cleaning and storm events in raising the concentration of nutrients in soil and water samples at our study sites. The older poultry site had higher total nitrogen and phosphorous surrounding the pads, whereas no elevated levels of nutrients were identified at the newer site. The ability of HUAP pads to hold onto contaminates decreases with age and use. This study also shows that the impacts from poultry activities on surface and groundwater can be minimized by using management practices such as HUAP pads. These practices can reduce pollution in the farm, increase productivity, and save farmers and ranchers time and money in the long run.« less
  5. Abstract The mysid Neomysis americana (Smith, 1873) is native to shallow shelf waters and estuaries of the western Atlantic coast of North America. Despite the important role mysids such as N. americana play in estuarine ecosystems as both consumers and as prey for higher trophic levels, there is limited information on how metabolism influences their spatial ecology and habitat requirements. In tributaries of Chesapeake Bay, MD, USA, previous research has shown that summer water temperatures can approach the lethal upper tolerance limit for N. americana. We measured the per capita metabolic rate (µgO2 min–1) of N. americana from the upper Patuxent River near Benedict, MD, a tributary of Chesapeake Bay in the laboratory to evaluate the metabolic response to salinity and temperature conditions that mysids experience in natural habitats. Sex-specific and diel patterns in metabolic rate were quantified. Metabolic rates did not differ between night and day and there was no significant difference in metabolic rate between males and females, exclusive of gravid females. Metabolic rates were lowest in salinity treatments of 2 and 8 at 29 °C, and highest in the salinity 2 treatment at 22 °C. Only temperature had a statistically significant, albeit unexpected, effect. This study showsmore »that the metabolic response of N. americana to temperature and salinity conditions is complex and plastic, and that metabolic rates can vary 3–4 fold within realistic summer temperature and salinity conditions. As environmental conditions continue to change, understanding metabolic response of mysids to realistic salinity and temperature conditions is necessary for understanding their distributions in temperate estuaries.« less