skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Innovative Point-of- Care (POC) Micro Biochip for Early Stage Ovarian Cancer Diagnostics
Most of the cancers are curable if they are detected at early stages. The early stage detection of cancers can significantly improve the patient treatment outcomes and thus helps to decrease the. To achieve the early detection of specific cancer, the biochip is incorporated with an innovative sensing mechanism and surface treated microchannels. The sensing mechanism employed in the Point of Care (POC) biochip is designed to be highly specific and sensitive. The surface treated microchannel helps to control the self-driven flow of the blood sample. Cancer antibodies with enhanced specificity and affinity are immobilized on the surface of the nano circuit in the microchannel. When the blood sample flows in the microchannel over the cancer antibodies, the corresponding cancer antigens from the blood form the antigen-antibody complex. These antigen-antibody interactions are captured with the variation in the electrical properties of the gold nano circuit using the sensing mechanism in the biochip. The point of care (POC) micro biochip is designed as an in-situ standalone device to diagnose ovarian cancer at the early stages by sensing the cancer antigens in the blood sample drawn from a finger prick. The POC biochip can help to diagnose, the existence of cancer and also its severity using the qualitative and the quantitative results of the sensing mechanism in the biochip.  more » « less
Award ID(s):
1643861
PAR ID:
10043607
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Sensors & transducers
Volume:
214
Issue:
7
ISSN:
1726-5479
Page Range / eLocation ID:
12-20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Highly sensitive, specific, and point-of-care (POC) serological assays are an essential tool to manage coronavirus disease 2019 (COVID-19). Here, we report on a microfluidic POC test that can profile the antibody response against multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens—spike S1 (S1), nucleocapsid (N), and the receptor binding domain (RBD)—simultaneously from 60 μl of blood, plasma, or serum. We assessed the levels of antibodies in plasma samples from 31 individuals (with longitudinal sampling) with severe COVID-19, 41 healthy individuals, and 18 individuals with seasonal coronavirus infections. This POC assay achieved high sensitivity and specificity, tracked seroconversion, and showed good concordance with a live virus microneutralization assay. We can also detect a prognostic biomarker of severity, IP-10 (interferon-γ–induced protein 10), on the same chip. Because our test requires minimal user intervention and is read by a handheld detector, it can be globally deployed to combat COVID-19. 
    more » « less
  2. Abstract Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template‐based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template‐based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x‐ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER‐Map, has been tested on a widely used antibody–antigen docking benchmark. The results show that PIPER‐Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure. 
    more » « less
  3. Abstract Key functions of antibodies, such as viral neutralisation, depend on high-affinity binding. However, viral neutralisation poorly correlates with antigen affinity for reasons that have been unclear. Here, we use a new mechanistic model of bivalent binding to study  >45 patient-isolated IgG1 antibodies interacting with SARS-CoV-2 RBD surfaces. The model provides the standard monovalent affinity/kinetics and new bivalent parameters, including the molecular reach: the maximum antigen separation enabling bivalent binding. We find large variations in these parameters across antibodies, including reach variations (22–46 nm) that exceed the physical antibody size (~15 nm). By using antigens of different physical sizes, we show that these large molecular reaches are the result of both the antibody and antigen sizes. Although viral neutralisation correlates poorly with affinity, a striking correlation is observed with molecular reach. Indeed, the molecular reach explains differences in neutralisation for antibodies binding with the same affinity to the same RBD-epitope. Thus, antibodies within an isotype class binding the same antigen can display differences in molecular reach, substantially modulating their binding and functional properties. 
    more » « less
  4. null (Ed.)
    The success of antibody therapeutics is strongly influenced by their multifunctional nature that couples antigen recognition mediated by their variable regions with effector functions and half-life extension mediated by a subset of their constant regions. Nevertheless, the monospecific IgG format is not optimal for many therapeutic applications, and this has led to the design of a vast number of unique multispecific antibody formats that enable targeting of multiple antigens or multiple epitopes on the same antigen. Despite the diversity of these formats, a common challenge in generating multispecific antibodies is that they display suboptimal physical and chemical properties relative to conventional IgGs and are more difficult to develop into therapeutics. Here we review advances in the design and engineering of multispecific antibodies with drug-like properties, including favorable stability, solubility, viscosity, specificity and pharmacokinetic properties. We also highlight emerging experimental and computational methods for improving the next generation of multispecific antibodies, as well as their constituent antibody fragments, with natural IgG-like properties. Finally, we identify several outstanding challenges that need to be addressed to increase the success of multispecific antibodies in the clinic. 
    more » « less
  5. Thrombospondin-2 (THBS2) is a prevailing prognostic biomarker implicated in different cancer types, such as deadly colorectal, pancreas, and triple-negative breast cancers. While the current methods for cancer-relevant protein detection, such as enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and immunohistochemistry, are feasible at advanced stages, they have shortcomings in sensitivity, specificity, and accessibility, particularly at low concentrations in complex biological fluids for early detection. Here, we propose and demonstrate a modular, in-solution assay design concept, Nanoparticle-Supported Rapid Electronic Detection (NasRED), as a versatile cancer screening and diagnostic platform. NasRED utilizes antibody-functionalized gold nanoparticles (AuNPs) to capture target proteins from a minute amount of sample (<10 µL) and achieve optimal performance with a short assay time by introducing active fluidic forces that act to promote biochemical reaction and accelerate signal transduction. This rapid (15 min) process serves to form AuNP clusters upon THBS2 binding and subsequently precipitate such clusters, resulting in color modulation of the test tubes that is dependent on the THBS2 concentration. Finally, a semiconductor-based, portable electronic device is used to digitize the optical signals for the sensitive detection of THBS2. High sensitivity (femtomolar level) and a large dynamic range (five orders of magnitude) are obtained to analyze THBS2 spiked in PBS, serum, whole blood, saliva, cerebrospinal fluids, and synovial fluids. High specificity is also preserved in differentiating THBS2 from other markers such as cancer antigen (CA) 19-9 and bovine serum albumin (BSA). This study highlights NasRED’s potential to enhance cancer prognosis and screening by offering a cost-effective, accessible, and minimally invasive solution. 
    more » « less