Decoupling of latitudinal gradients in species and genus geographic range size: a signature of clade range expansion: Decoupling between gradients in species and genus range size
- Award ID(s):
- 1633535
- PAR ID:
- 10045625
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 26
- Issue:
- 3
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- 288 to 303
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Species ranges are shifting in response to climate change, but most predictions disregard food–web interactions and, in particular, if and how such interactions change through time. Predator–prey interactions could speed up species range shifts through enemy release or create lags through biotic resistance. Here, we developed a spatially explicit model of interacting species, each with a thermal niche and embedded in a size-structured food–web across a temperature gradient that was then exposed to warming. We also created counterfactual single species models to contrast and highlight the effect of trophic interactions on range shifts. We found that dynamic trophic interactions hampered species range shifts across 450 simulated food–webs with up to 200 species each over 200 years of warming. All species experiencing dynamic trophic interactions shifted more slowly than single-species models would predict. In addition, the trailing edges of larger bodied species ranges shifted especially slowly because of ecological subsidies from small shifting prey. Trophic interactions also reduced the numbers of locally novel species, novel interactions and productive species, thus maintaining historical community compositions for longer. Current forecasts ignoring dynamic food–web interactions and allometry may overestimate species' tendency to track climate change.more » « less
-
As the name of the genusPantoea(“of all sorts and sources”) suggests, this genus includes bacteria with a wide range of provenances, including plants, animals, soils, components of the water cycle, and humans. Some members of the genus are pathogenic to plants, and some are suspected to be opportunistic human pathogens; while others are used as microbial pesticides or show promise in biotechnological applications. During its taxonomic history, the genus and its species have seen many revisions. However, evolutionary and comparative genomics studies have started to provide a solid foundation for a more stable taxonomy. To move further toward this goal, we have built a 2,509-gene core genome tree of 437 public genome sequences representing the currently known diversity of the genusPantoea. Clades were evaluated for being evolutionarily and ecologically significant by determining bootstrap support, gene content differences, and recent recombination events. These results were then integrated with genome metadata, published literature, descriptions of named species with standing in nomenclature, and circumscriptions of yet-unnamed species clusters, 15 of which we assigned names under the nascent SeqCode. Finally, genome-based circumscriptions and descriptions of each species and each significant genetic lineage within species were uploaded to the LINbase Web server so that newly sequenced genomes of isolates belonging to any of these groups could be precisely and accurately identified.more » « less
-
Abstract Most cities in the United States of America are thought to have followed similar development trajectories to evolve into their present form. However, data on spatial development of cities are limited prior to 1970. Here we leverage a compilation of high-resolution spatial land use and building data to examine the evolving size and form (shape and structure) of US metropolitan areas since the early twentieth century. Our analysis of building patterns over 100 years reveals strong regularities in the development of the size and density of cities and their surroundings, regardless of timing or location of development. At the same time, we find that trajectories regarding shape and structure are harder to codify and more complex. We conclude that these discrepant developments of urban size- and form-related characteristics are driven, in part, by the long-term decoupling of these two sets of attributes over time.more » « less
An official website of the United States government
