The regioselective conversion of C−H bonds into C−Si bonds is extremely important owing to the natural abundance and non‐toxicity of silicon. Classical silylation reactions often suffer from poor functional group compatibility, low atom economy, and insufficient regioselectivity. Herein, we disclose a template‐assisted method for the regioselective
The regioselective conversion of C−H bonds into C−Si bonds is extremely important owing to the natural abundance and non‐toxicity of silicon. Classical silylation reactions often suffer from poor functional group compatibility, low atom economy, and insufficient regioselectivity. Herein, we disclose a template‐assisted method for the regioselective
- Award ID(s):
- 1654122
- PAR ID:
- 10045765
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 56
- Issue:
- 47
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 14903-14907
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract para silylation of toluene derivatives. A new template was designed, and the origin of selectivity was analyzed experimentally and computationally. An interesting substrate–solvent hydrogen‐bonding interaction was observed. Kinetic, spectroscopic, and computational studies shed light on the reaction mechanism. The synthetic significance of this strategy was highlighted by the generation of a precursor of a potential lipophilic bioisostere of γ‐aminobutyric acid (GABA), various late‐stage diversifications, and by mimicking enzymatic transformations. -
Abstract Hydrosilyl ethers, generated in situ by the dehydrogenative silylation of cyclopropylmethanols with diethylsilane, undergo asymmetric, intramolecular silylation of cyclopropyl C−H bonds in high yields and with high enantiomeric excesses in the presence of a rhodium catalyst derived from a rhodium precursor and the bisphosphine (
S )‐DTBM‐SEGPHOS. The resulting enantioenriched oxasilolanes are suitable substrates for the Tamao–Fleming oxidation to form cyclopropanols with conservation of theee value from the C−H silylation. Preliminary mechanistic data suggest that C−H cleavage is likely to be the turnover‐limiting and enantioselectivity‐determining step. -
Abstract We report a highly enantioselective intermolecular C−H bond silylation catalyzed by a phosphoramidite‐ligated iridium catalyst. Under reagent‐controlled protocols, propargylsilanes resulting from C(sp3)−H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less‐hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situ
‐ generated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3‐enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3‐propargyl/allenyl Ir intermediate is generated upon π‐complexation‐assisted deprotonation and undergoes outer‐sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step. -
Abstract We report a highly enantioselective intermolecular C−H bond silylation catalyzed by a phosphoramidite‐ligated iridium catalyst. Under reagent‐controlled protocols, propargylsilanes resulting from C(sp3)−H functionalization, as well the regioisomeric and synthetically versatile allenylsilanes, could be obtained with excellent levels of enantioselectivity and good to excellent control of propargyl/allenyl selectivity. In the case of unsymmetrical dialkyl acetylenes, good to excellent selectivity for functionalization at the less‐hindered site was also observed. A variety of electrophilic silyl sources (R3SiOTf and R3SiNTf2), either commercial or in situ
‐ generated, were used as the silylation reagents, and a broad range of simple and functionalized alkynes, including aryl alkyl acetylenes, dialkyl acetylenes, 1,3‐enynes, and drug derivatives were successfully employed as substrates. Detailed mechanistic experiments and DFT calculations suggest that an η3‐propargyl/allenyl Ir intermediate is generated upon π‐complexation‐assisted deprotonation and undergoes outer‐sphere attack by the electrophilic silylating reagent to give propargylic silanes, with the latter step identified as the enantiodetermining step. -
Abstract Transition metal catalysis plays a pivotal role in transforming unreactive C–H bonds. However, regioselective activation of distal aliphatic C–H bonds poses a tremendous challenge, particularly in the absence of directing templates. Activation of a methylene C–H bond in the presence of methyl C–H is underexplored. Here we show activation of a methylene C–H bond in the presence of methyl C–H bonds to form unsaturated bicyclic lactones. The protocol allows the reversal of the general selectivity in aliphatic C–H bond activation. Computational studies suggest that reversible C–H activation is followed by β-hydride elimination to generate the Pd-coordinated cycloalkene that undergoes stereoselective C–O cyclization, and subsequent β-hydride elimination to provide bicyclic unsaturated lactones. The broad generality of this reaction has been highlighted via dehydrogenative lactonization of mid to macro ring containing acids along with the C–H olefination reaction with olefin and allyl alcohol. The method substantially simplifies the synthesis of important bicyclic lactones that are important features of natural products as well as pharmacoactive molecules.